leetcode链接
给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。
在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],而当 i >= 0 时 C[i+A.length] = C[i])
此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], …, C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length)
示例 1:
输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3
示例 2:
输入:[5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
示例 3:
输入:[3,-1,2,-1]
输出:4
解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4
示例 4:
输入:[3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
示例 5:
输入:[-2,-3,-1]
输出:-1
解释:从子数组 [-1] 得到最大和 -1
提示:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
思路
分两种情况,一种为没有跨越边界的情况,一种为跨越边界的情况 没有跨越边界的情况直接求子数组的最大和即可; 跨越边界的情况可以对数组求和再减去无环的子数组的最小和,即可得到跨越边界情况下的子数组最大和; 求以上两种情况的大值即为结果,另外需要考虑全部为负数的情况
class Solution {
public int maxSubarraySumCircular(int[] A) {
if (A == null || A.length < 1) {
return 0;
}
int curMax, max, curMin, min, sum;
curMax = max = curMin = min = sum = A[0];
for (int i = 1; i < A.length; i++) {
sum += A[i];
curMax = curMax > 0 ? curMax + A[i] : A[i];
max = curMax > max ? curMax : max;
curMin = curMin < 0 ? curMin + A[i] : A[i];
min = curMin < min ? curMin : min;
}
if (max < 0)
return max;
return Math.max(sum - min, max);
}
}