环形子数组的最大和

leetcode链接
给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。

在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],而当 i >= 0 时 C[i+A.length] = C[i])

此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], …, C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length)

示例 1:

输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例 2:

输入:[5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例 3:

输入:[3,-1,2,-1]
输出:4
解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4

示例 4:

输入:[3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3

示例 5:

输入:[-2,-3,-1]
输出:-1
解释:从子数组 [-1] 得到最大和 -1

提示:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000

思路

分两种情况,一种为没有跨越边界的情况,一种为跨越边界的情况 没有跨越边界的情况直接求子数组的最大和即可; 跨越边界的情况可以对数组求和再减去无环的子数组的最小和,即可得到跨越边界情况下的子数组最大和; 求以上两种情况的大值即为结果,另外需要考虑全部为负数的情况

class Solution {
    public int maxSubarraySumCircular(int[] A) { 
        if (A == null || A.length < 1) {
            return 0;
        }
        int curMax, max, curMin, min, sum;
        curMax  = max = curMin = min = sum = A[0];
        for (int i = 1; i < A.length; i++) {
            sum += A[i];
            curMax = curMax > 0 ? curMax + A[i] : A[i]; 
            max = curMax > max ? curMax : max;
            curMin = curMin < 0 ? curMin + A[i] : A[i];
            min = curMin < min ? curMin : min;
        }
        if (max < 0)
            return max;
        return Math.max(sum - min, max);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值