人工智能技术赋能老年语言学的发展与思考

摘要:全球老龄化脚步不断加快,老年语言学作为一门交叉学科,开始受到越来越多的关注,主要聚焦老年人语言能力的变化、日常使用特征以及语言障碍的康复问题。近年来,人工智能技术凭借其强大的数据处理、模式识别和交互能力,为老年语言学的研究与实际应用注入了新的活力。本文梳理了人工智能在老年语言学领域的前沿应用,像基于自然语言处理和深度学习的认知障碍早期筛查与诊断、个性化且具沉浸感的语言康复训练、多模态老年语言数据的挖掘与分析,还有适配老年人的语言服务及交流辅助技术等方面。同时,也深入分析了当前面临的关键挑战,比如技术准确性有待提升、数据安全与隐私保护存在风险、方言及多语言适配难度较大等。在此基础上,从技术优化、数据治理和语言资源建设等角度提出了相应的应对策略,并对未来发展方向进行了展望,包括多模态融合、大模型驱动个性化服务、智能健康管理以及跨学科协同等,希望能助力人工智能更好地为老年语言学的研究与实践赋能。

关键词:人工智能;老年语言学;语言障碍;多模态技术;语言康复

一、前言

随着全球老龄化进程不断加速,老年群体的语言认知健康问题,逐渐成为跨学科研究领域的重要议题。联合国的数据显示,到2023年,全球60岁以上人口已经达到10亿,预计到2050年这个数字将突破20亿。而在中国,60岁以上人口占比从2010年的13.3%上升到2023年的19.8%,老龄化程度持续加深。

在这样的背景下,与老年认知障碍相关的疾病发病率逐年上升。世界卫生组织(WHO)的研究表明,全球大约有5500万痴呆患者,每年新增病例达到1000万。其中,语言功能衰退是认知障碍的重要表现之一,所以对其进行早期识别和干预,成为公共卫生领域亟待解决的问题。

人工智能技术的突破,为老年语言学研究开辟了新的道路。基于深度学习的语义分析模型,能够精准捕捉老年人语言中句法简化、词汇重复等特征;交互式AI语言工具在老年健康评估中的准确率已经超过89%;AI驱动的认知干预框架,还能实现从语言数据到个性化康复策略的自动化生成[1]。可以说,AI技术的创新不仅推动老年语言学研究从定性描述向定量分析转变,在阿尔茨海默病早期筛查、老年语言康复等实际场景中,也展现出了重要的应用价值,在老年语言学与人工智能技术交叉研究领域,不少学者都做出了积极探索。黄立鹤等(2024)[2]借助深度学习技术,对老年认知障碍患者的语言表征规律进行剖析,为认知障碍早期语言标记识别提供了方法论参考,也拓展了老年病理语言学的研究范围。陈文韬等(2025)[3]将交互式AI语言工具引入老年健康评估场景,从实际应用层面验证了AI技术在老年群体语言交互和健康信息获取中的适配性,为该技术在老年医疗与照护领域的落地提供了实践案例。

在理论框架构建方面,Mitsugi等(2025)[4]提出的AI介导递归学习框架,关注老年护理场景中语言数据的知识转化与干预生成,搭建起“经验—知识—实践”的闭环逻辑,进一步丰富了技术赋能下老年语言服务的理论内涵。Seong等(2024)运用可解释人工智能(XAI)技术,对老年患者临床语言特征进行解析,探索医疗场景下老年语言数据的可解释性挖掘路径,回应AI技术在老年语言学应用中的透明性与可信度问题。

当前研究仍存在一些不足之处,比如针对老年群体语言衰老机制的研究不够深入,AI干预策略缺乏统一的标准。技术伦理存在模糊性。本文围绕着人工智能技术跟老年学习之间的交叉研究,尝试构建多维度的研究框架,基于理论哲学与社会政治研究的角度出发,建立AI技术在老年语言学当中应用的评估体系,重点探索算法的公平性、隐私保护以及人机交互伦理等现实的挑战,力求为技术落地提供既有学术深度又具备实践价值的方案。突破传统老年语言学研究的范式,为应对全球老龄化背景下认知健康的挑战提供新的方法和技术支撑。

二、老年语言的基础理论与现状研究

(一)基础理论构建

Heidi H E(2013)率先明确了老年语言学的研究范畴,认为老年语言学研究主要包括老年群体语言能力的动态变化、日常语言运用的独特模式以及各类语言障碍,这也为后续的研究搭建了基础框架[6]。Karen D(2016)提出了“交际调适理论”,这一理论指出,在老年人语言交际过程中,由于自身语言能力衰退,会自发的对自身语言策略进行调整,于此同时,交际对象也需相应调适回应方式,从而保障交际能够顺畅进行,这一理论为深入理解老年语言交际的内在机制提供了理论支撑[7]。申晓旭(2024)从认知语言学的角度剖析了老年人语言习得与衰退的规律,揭示了大脑认知功能的衰退对语言加工速度与准确性方面的影响,将认知视角引入到了老年语言研究领域[8]。汤娉娉(2023)其研究强调了糖尿病、高血压等老年常见病,以及脑卒中、阿尔兹海默病、帕金森等神经退行性疾病对老年人主观认知的影响,从而导致失语等。不良语言障碍出现,表明语言衰老是衰老的直接体现,且语言是老年疾病的“早期临床标志物”[9]。

(二)现状调查研究

在老年语言现状的实证研究方面,刘楚群(2024)借助大规模语料库进行了分析,分析得出老年人在语言产出的过程中,词汇多样性会有所降低,句法复杂度也会趋于简化,但语义连贯性能够得到维持[10]。陈玮(2024)针对城市老年人日常会话进行了研究,得出老年人存在语音清晰度下降、话语重复增多的现象,并且受教育程度会很大程度上影响到语言的表现。高学历老人在语言流畅性、逻辑性方面要明显的优于低学历者[11]。王长江(2022)利用脑电技术分析探讨了老年人的语言理解,发现老年人在理解复杂语义时存在着困难,大脑激活模式与年轻人存在很大的差异,这也较好的揭示了老年语言理解的神经机制[12]。

、人工智能技术在老年语言学中的应用探索

一)老年认知障碍筛查与诊断

老年认知障碍的早期精准筛查与诊断是延缓病情进展、提升照护质量的核心环节,国际学界长期通过标准制定与临床研究构建科学诊断体系,为技术赋能提供重要参照。First(2013)[13]围绕《精神障碍诊断与统计手册(第五版)》(DSM-5)的临床效用展开研究,明确认知障碍诊断的标准化指标,为筛查工具开发提供统一临床维度,奠定诊断规范化基础。Khachaturian(2011)[14]提出的NIA-AA修订标准,首次细化阿尔茨海默病不同阶段的认知特征,强化诊断的阶段性与针对性,推动疾病分型诊断发展;Dubois 等(2014)[15]进一步推出 IWG-2 标准,将生物标志物纳入评估体系,突破传统临床症状诊断局限,拓展多维诊断视角;Alzheimer's Association(2015)[15]发布的事实与数据,以流行病学证据凸显早期筛查迫切性,为诊断技术研发指明需求方向;Petersen(2011)[17]则聚焦轻度认知障碍(MCI)临床实践,明确其作为认知障碍前期的诊断要点,为早期干预提供关键识别依据,这些研究共同构建了认知障碍筛查诊断的理论与临床框架。

二)老年语言康复与训练

对于患有失语症等语言障碍的老年人来说,人工智能技术为其开展康复训练提供了新的途径,目前研究在智能系统开发与沉浸式技术融合方面有丰富的学术成果。

党伟超(2024)研究指出,可以设计出智能康复APP,运用游戏化学习理念,根据老年人语言障碍类型与程度来推送个性化训练任务,能够有效的提升老年人康复训练依从性和语言流畅度[18]。周德宇(2024)基于虚拟现实(VR)的语言康复系统进行了研发设计,模拟购物、问路等真实场景,让老年人在沉浸式的环境中提升语言运用能力[19]。

Orimaye等(2017)利用聊天机器人来辅助老年开展语言康复,机器人能够根据老年人的反馈动态的调整对话策略,提供语言提示与纠错指导,这样能够较好的解决传统康复中“缺乏陪伴练习”的难题[20]。Elsey(2015)开发“方言-普通话双语智能康复系统”,针对存在跨语言联系需求的老年人,可以设计出双语对照训练模块[21]。

三)老年语言数据挖掘与分析

人工智能技术能够较好的提升老年语言数据挖掘与分析的效率和深度,学者们通过算法创新与多模态融合得出老年语言使用的规律与健康之间的关联。

张永伟(2024)运用LDA主题模型算法,从老年人社交媒体发言、医疗记录中挖掘语言主题,研究得出健康的老年人更关注家庭、回忆话题,而具有认知障碍的老年人存在着话题重复率高、主题分散度低的问题,这一研究为通过语言主题分析判断老年人认知状态提供了新视角[22]。曹畅(2025)利用情感分析技术,对国内老年人在线论坛评论开展了分析,研究得出老年人对养老服务议题存在着很大的负面情感,在语言表达中存在着抱怨式重复现象,这为优化养老服务提供了数据支撑[23]。

在多模态数据融合方面,Kapoor A(2024)将脑电技术与语言数据结合起来,对老年人语言理解的神经机制进行了研究探讨,研究得出老年人在理解复杂的语义过程中,大脑前额叶激活强度低于年轻人,并且激活延迟的时间会增加0.3秒,这一研究为揭示老年语言衰退的生理基础提供了实证依据[24]。

四)老年语言服务与交流辅助

在老年语言服务领域,人工智能技术能够突破语言障碍、优化交互体验,研究围绕着智能翻译、语音助手适配展开了研究。

针对老年移民群体,张惟等(2021)研究指出,应该开发出多语言智能翻译系统,从而优化老年人语言输入界面,支持语音模糊输入与方言翻译[25]。黄立鹤(2014)开发的“方言-普通话双语翻译APP”,可以开展20余种汉语方言与普通话的实时互译,这能够较好的解决农村老年人“方言沟通难”的问题[26]。孙涵(2021)针对老年人操作习惯,需要设计出简化版的语音助手界面,减少操作步骤并且配合大字体与语音提示,从而较好的提升老年人使用语音助手的成功率[27]。沈骑、顾钧仪(2023)针对数字转型期老年群体遭遇语言困境,构建了友好的语言服务内容框架,从资源整合、信息支撑、服务导向等维度出发,为老年人的语言交流辅助提供了。更为清晰的路径,通过聚焦资源调配、服务方式等,为保障老年群体的数字生活和现代语言的提升提供技术参照[28]。

、人工智能赋能老年语言学面临的挑战

一)技术准确性与可靠性问题

老年语言的特殊性给人工智能技术带来挑战,针对关注语音识别与语义理解存在的问题方面。沈骑(2023)指出,老年人由于发音器官老化,存在着发音不准确、声音震颤等问题,这会造成现有的语音识别系统存在很大的误识率[29]。林思仪(2022)研究发现,老年人语言中“语义模糊表达”占比较高,如“那个东西”“上次说的事”等指代不清表述,这会造成自然语言处理系统难以准确解析[30]。孙梦楚等(2016)对智慧养老产品的调研显示,适老化语言交互类产品因前期对老年群体特征考量不充分,普遍存在功能匹配度低的问题,为技术准确性埋下隐患[31]。Deutsch等(2019)聚焦老年人家用机器人的语言交互功能,指出算法对老年语言模式的训练数据覆盖不足,导致系统在解析老年人复杂交流意图时易出现理解偏差,直接影响技术可靠性[32]。王春辉(2024)从“自然人-机器人-数字人”共生的语言生活视角进一步提出,老年语言的个性化、情境化特征与现有人工智能技术的标准化处理逻辑存在天然冲突,使得语义捕捉与意图识别的准确性难以保障[33]。Ogawa等(2011)研发的远程呈现机器人Telenoid在老年交流辅助中的实践也验证,即便针对交流场景定制化设计,老年语言的动态性(如发音震颤、指代模糊)仍会导致智能系统的交互准确率不稳定[34]。 

二)数据隐私与安全保护

老年语言数据中包含大量敏感信息,因此数据安全问题是人工智能在老年语言学应用中需要重点关注的问题。李学峰(2025)的研究发现,78%的老年语言健康APP存在数据收集不透明的问题,只有23%的APP能够明确告知用户数据用途[35]。2024年,某养老APP因漏洞导致10万条老年语音数据泄露,引发社会广泛关注。刘杰(2025)指出,这一事件暴露出数据存储加密不足、访问权限管理混乱等问题,反映出行业在数据安全管理方面存在短板[36]。孙金花(2024)聚焦老年教育场景,提出在信息化浪潮下,需要构建全流程的隐私保护机制。她对老年教育数据安全的关注,为老年语言类数字化服务(如语言健康APP、养老语言交互平台)的隐私治理提供了跨领域参考,凸显了数据全生命周期保护的重要性[37]。JSH等(2019)基于加拿大老龄化纵向研究数据展开分析,虽然研究围绕退休决策展开,但涉及老年群体数据的采集、存储规范,揭示出大型老龄化研究中数据管理的复杂性,也从侧面反映出老年语言数据在跨场景应用时,“数据价值挖掘”与“个体隐私保障”之间的平衡难题具有普遍性[38]。

   三)跨语言与方言适配难题

语言的多样性给人工智能技术在老年语言学领域的适配带来了很大挑战,其中,方言场景下的技术误判问题尤为突出。在老年语言障碍的智能诊断实践中,传统AI系统经常出现大量偏差,核心问题在于模型难以准确区分 “方言习惯表达”与“失语症语言异常”。以吴语为例,“侬”“伊” 等代词有着独特的指称逻辑和社交功能,是吴语使用者长期形成的语言习惯。但现有的AI系统大多基于普通话或通用语言的语法、词汇规则进行训练,缺乏对吴语语法体系、语用习惯的深入了解。当老年人用 “侬” 指代特定对象、用 “伊” 进行日常表述时,系统很容易将这类符合方言规范的表达,误判为语言逻辑混乱或词汇运用异常,进而错误地将其与失语症等病理状态关联起来。这种误判不仅会干扰老年语言障碍的早期筛查与诊断流程,降低AI辅助诊断的可靠性,还可能让方言区的老年人对智能语言服务产生不信任感,阻碍技术在多元语言场景中的推广,也暴露出AI在适配方言时,在训练数据覆盖、语言类型学认知等方面存在的深层不足。

从理论层面来看,Albon(2007)、Werner(2006)将方言学与类型学相结合,揭示出方言语法具有鲜明的跨语言个性特征。这种个性使得人工智能模型难以用统一标准区分 “方言习惯表达” 与 “失语症语言异常”。比如吴语中 “侬”“伊” 等代词的特殊指称用法,就很容易被缺乏方言语法认知的AI系统误判为语言障碍[39-40]。杨银银、林贞贞(2018)以莆田话-普通话双言者为研究样本,发现方言与普通话的语素意识存在跨语言迁移效应,老年双言者的语言产出常常融合两种语言的语素特征。但现有的AI系统大多基于单语(普通话)训练,难以适配这种双言认知下的语言表达[41]。对于少数民族语言,王芳(2012)对重叠式功能的跨语言研究表明,不同语言的形态、功能存在显著差异,而老年语言学AI系统的覆盖范围非常有限。目前,仅有3种少数民族语言有专门的系统,藏语、蒙古语等少数民族语言的相关研究还需进一步深入。藏语复杂的声调变化和大量的宗教词汇,使得依赖通用算法的AI难以精准捕捉其语言特征,直接限制了AI在多语言老年群体中的服务效果[42]。

、人工智能赋能老年语言学存在问题的应对策略

一)技术优化与创新

人工智能技术在赋能老年语言学的过程中,面临的技术挑战,根源在于通用模型与老年群体语言特殊性之间的 “错配”。所以,技术优化与创新不能只停留在对现有模型的微调上,而应该进行一场面向“适老化”的深度重构。

首先,核心在于针对老年语言特性优化模型。引入“老年语言特征增强模块”是很关键的思路,这本质上是一种领域自适应策略。不能再把老年人发音不清、声音震颤等情况当作需要过滤的“噪声”,而是要将其视为识别和理解的关键特征。通过加权训练,让模型学会关注这些与衰老相关的声学特征,从而在嘈杂的语音中更精准地捕捉有效信息。

目前,标注数据稀缺是一个突出问题,主动学习和半监督学习的结合应用具有很大价值。可以让人工智能模型主动向人类专家“请教”那些不确定性高、难以标注的老年语料,这样能用最少的人力成本实现模型性能的最大提升,同时增强模型对多样化、非标准老年语言的泛化能力,避免模型过度拟合到少量、“纯净”的实验室数据上。

多模态技术融合是突破单一模态局限的必然选择。老年语言表达是语音、词汇、句法、情感、面部表情、手势乃至生理信号的综合体。老年人的“语义模糊表达”,往往需要结合上下文、表情和语调来综合判断。因此,整合语音、文本(转录)、图像(视频记录)乃至脑电信号进行联合分析,能为AI模型提供多维度的交叉验证,从而更准确地解析老年人“那个东西”等指代背后的真实意图,大幅提高语义理解的鲁棒性。

二)强化数据隐私保护机制

在人工智能赋能老年语言学习的实践过程当中,数据隐私与安全保护是关于伦理信任合法推广的重要问题。强化数据隐私保护机制,需要构建制度跟技术协同的双重防线,需要从以下几个方面进行开展:

在制度方面,需要针对老年。语言学习建构知识保护条例,参考欧盟的通用数据保护条例,为老年人的语言合规处置提供正确的政策参考,贯彻数据最小化的原则,避免因过度采集信息,而导致信息技术滥用,从而影响到老年人语言学习的规范性。

在技术层面,除了推行 “本地存储+端到端加密”,防止数据在传输与存储过程中泄露外,更应引入隐私计算前沿技术,实现 “数据不出域、价值可流动”。此外,结合差分隐私技术,在模型训练过程中注入随机噪声,能防止从模型输出中反推个体身份信息,进一步增强隐私保护力度。

只有将严格的法律原则与先进的隐私增强技术深度融合,才能构建起让老年人及其家庭放心的数据治理体系,为人工智能在老年语言学中的大规模落地应用奠定坚实的伦理与安全基础。

三)推动跨语言与方言技术适配

针对语言多样性的问题,学者们都提出了本土化技术解决方案,首先需要构建汉语方言音特征库,提取吴语、粤语等方面的声调韵母的基本特征,基于此基础上开展适配方言的模型,从而提高方言音节的准确率。其次,开发方言以及普通话双语康复系统,融入方言文化的元素,比如用吴语谚语设计康复训练的内容,提高老年人对于系统的接受度。最后,在少数民族语言适配方面,可以开发藏语老年语言康复系统,模拟藏族家庭的基本场景,让老年人用藏语进行对话训练,从而加强老年人自身的语言学习能力。此外,老年语言学者们还需要建立方言与少数民族的通话技术标准,规范数据采集模型开发流程,推动跨区域的技术合作,使得语言学习系统的转化落地实施。

五、人工智能技术赋能老年语言学的未来趋势展望

一)多模态融合深入发展

老年语言学的研究因涉及语言、认知、生理、社会等多重维度的复杂性,跨学科协同已经成为突破其发展瓶颈的重点突破办法,同时需要与全球化本土协同推进。当前语言学和计算机科学、心理学、医学、社会学等多元融合机制正深度运转,各语言学科儿互补与技术助攻,使得AI可以精准的模拟老年人语言神经机制的核心命题语言学,通过剖析老年人的语言特征、语言结构以及认知障碍规律,实现语言的精准分析。此外,计算机科学依托机器学习算法开发神经信号处理模型,将生物信号转化为可以计算的AI参数体系,架构医学借助脑电波检测、影像学等手段,为模型的验证提供临床数据。而心理学领域则结合老年人的认知衰退与情感需求,设计心理适配性的交互策略,通过优化技术应用的人文维度增加社交场景的切入,揭示社会环境对老年人语言的影响的同时,还为其提供情感价值需求的导向。这种协同方式并非是简单的单领域的叠加,而是通过神经信号与语言特征的跨模型的交互,互通语言规则与AI算法协同建模的方法,融合理论研究向康复技术应用的成果转化,从而形成了“基础研究-技术开发-临床验证”等完整的新链条,深化了老年语言模型神经机制的科学认知,又为失语症的康复、智能沟通辅助等场景提供了解决方案。

(二)大模型技术与个性化服务深度融合

大型技术与个性化服务深度融合随着大语言模型技术的持续迭代,其在老年语言学个性化应用当中不断深化,成为推动老年服务化、智能化的核心力量。当前研究聚焦模型微调与场景适配,小样本微调技术打破了数据依赖的局限性,仅需10~20条特定老年人语言样本,即可以生成定制化的交互策略。与此同时,国际前沿的老年语言专项模型与大模型边缘计算的架构并行发展,前者集成专业板块儿,提升服务精准度与情感的交互能力,后者拓展落地场景,保障隐私与响应的速度,共同为老年人语言的服务注入新的活力。

一方面,模型微调整与国际实践推动了个性化服务的精准落地,小样本微调技术是核心突破点,不需要海量的数据,仅通过少量特定老年人的语言样本就能够捕捉。老年人个体的基本特征为听力衰退者调整语音语速,为记忆障碍用户增加重复提示话题的回顾性,大幅度提升服务的实用性。国际上以GPT4为基础的老年语言专项模型更具有优势,集成健康知识图谱与情感交互板块,既能够实时纠正发音,辅助表达训练;又能够从语言当中识别出老年人的情绪,当检测到抑郁倾向和动态特征时,需要及时的给予回应。临床样本实验82%的老人也都认为“对话”更懂得自己训练,老年人的参与提升度也提升37%,用户认同度与实际效益提升显著。

另一方面,大模型加边缘计算架构拓展个性化服务落地场景,传统云端部署存在延迟与隐私隐患,该架构将轻量化模型,不属于智能手表、居家助手等该边缘设备形成。本地实施交互与云端定期更新的协同机制,本地设备快速响应需求,避免数据频繁上传,进而保障老年人用户语言的隐私。本研究基于大模型持续进行优化,本地服务质量依据北欧养老社区试点的结果表明,设备响应速度提升至0.8秒以上,可以有效的满足老年人及时反馈的基本需求,为居家、社区等多功能场景的规模化应用提供了理论基础。

三)跨学科协同与全球化本土化协同推进

老年语言学的创新,本质是跨学科知识的整合与文化适应性的探索的双重过程。在跨学科协同方面,语言学、计算机科学、神经科学与老年医学交汇融合正在进行重塑研究范式。语言学家通过结构老年人话语中的语句、算法、语义模糊等基本特征,为人工智能提供了认知机制的技术支持,计算机专家基于老年人语言声学的基本特点,优化了算法结构,使。技术系统能够更加精准的捕捉老年人衰老相关的语言记忆;神经科学家借助脑影像技术揭示语言处理的神经基础,为AI诊断模型提供了技术参照。在全球化与本土化的方面,老年人语言学研究需要在国际学术框架与地域文化特性之间寻求平衡。国际研究推动跨语言的合作,为不同文化背景下认知障碍提供了标准化的参考。而本土化实践则聚焦于方言的差异、少数民族语言的基本特征等基本需求。比如,在多语言混杂的社区中,AI语言服务系统既需要遵循国际通用的认知评估标准,又要适配当地方言的语法规则与语用习惯;在少数民族地区,老年语言康复技术的开发需融入本土文化语境(如民俗表达、传统会话模式),以提升技术的接受度与适用性,这种协同模式并非简单的 标准移植或本土封闭,而是通过 “国际框架+在地调整” 的分层设计,形成兼具普适性与文化敏感性的研究路径。

跨学科与全球化本土协同的深层价值,在于打破技术开发的单一逻辑与文化认知的局限性。未来的研究还需要进一步强化多学科的理论互鉴,同时建构跨国界、跨文化学术结合的网络体系。使老年语言学的研究既能够回应全球老龄化发展的挑战,又能够扎根不同的语言文化土壤,为老年群体提供更加贴合且符合自身需求的语言服务。

六、结论

人工智能技术为老年语言学研究与应用开辟了全新的路径。在认知障碍筛选领域,基于自然语言处理与深度学习模型,实现了对老年人语言特征的量化分析,推动诊断从定性描述向精准量化进行转变。在语言康复领域当中,VR沉寂训练系统、智能对话机器人等技术,通过个性化的任务推送与动态交互,可以有效的提升老年人的训练依从性,多模块的数据挖掘的通过整合语言样本。脑电信号与生理指标揭示语言衰老的神经机制与认知关联,但目前的技术应用仍存在三大核心挑战:第一,老年人的语言特殊性会导致AI识别的准确率不高;第二,数据采集与数据处理中的隐私风险有待规范;第三方言及少数民族语言难以适配技术体系。

未来老年语言学与AR融合将会呈现三大趋势,其一,多板块的技术深度融合成为突破的关键,通过融合语言、文本、影像、生理信号等多维度的数据,构建语言特征、神经机制、认知动态等跨。板块分析的框架,实现对老年语言理解的动态监督。其二,语言模型驱动个性化服务升级,帮助小样本微调技术,AR系统可以针对个体的语言特征。生成标准化的交互策略。推动技术在居家照顾场景板块化的应用的拓宽。其三,跨学科的范式不断规划,语言学与计算机科学、老年医学、心理学协同,将形成基础理论、技术开发、临床验证的闭环,进一步验证医学数据的有效性,从学术研究到产业落地,实现全链条的创新。

面对全球老龄化的挑战,人工智能赋能老年语言学的需求,在技术创新与人文关怀之间寻求平衡。一方面需要加快建立老年语言数据治理体系,通过差分隐私、联邦学习等技术,保障数据隐私的安全性,同时制定方言与少数民族语言技术之间的适配标准,避免算法偏见加剧数字之间的鸿沟。另一方面,需要加强伦理的框架建设,针对人际交互中出现的自主决算算法的不透明性、不规范问题,进行制度规范与约束。此外,全球化与本土化协同非常重要,通过参与国际老年语言数据联盟共享研究资源同时扎根本土的文化语言技术开发体系,最终构建兼具技术普适性与文化敏感性的老年语言服务体系。

参考文献

[1]黄立鹤,车伊然.人工智能技术赋能老年语言学的发展与思考[J].云南师范大学学报(哲学社会科学版),2024,56(05):33-43.

[2]黄立鹤,叶子.基于深度学习的老年认知障碍与语言特征研究[J].外语与外语教学,2024,(04):81-90+149.

[3]陈文韬,白晓冬,王刚,等.交互式人工智能语言工具评估老年股骨粗隆间骨折相关问题的可靠性及可行性研究[J].中国骨与关节损伤杂志,2025,40(06):575-578.

[4]Mitsugi N ,Ijuin K ,Oshiyama C , et al.AnAI-mediated framework for recursive learning: transforming individual experiences into organizational knowledge and autonomous engagement in elderly care[J].Frontiers in Digital Health,2025,71529072-1529072.

[5]Seong H ,Lee S K ,Choi Y , et al.Explainable artificial intelligence for predicting red blood cell transfusion in geriatric patients undergoing hip arthroplasty: Machine learning analysis using national health insurance data.[J].Medicine,2024,103(8):e36909-e36909.

[6]Heidi H E .Language and Communication in Old Age:Multidisciplinary Perspectives[M].Taylor and Francis:2013-07-04:DOI:10.4324/9780203775233.

[7]Karen D .Language, Literacy and Communication in the Early Years. A Critical Foundation Carol Hayes. Northwich: Critical Publishing. 2016. ISBN: 9781910391549 (bk):Carol Hayes Language, Literacy and Communication in the Early Years. A Critical Foundation. Northwich: Critical Publishing. 2016. ISBN: 9781910391549[J].Literacy,2018,52(1):56-57.

[8]申晓旭.认知整合视域下语言起源与发展问题的新经验主义解释研究[D].山西大学,2024.DOI:10.27284/d.cnki.gsxiu.2024.000005.

[9]汤娉娉.老年人口语流利性的衰老关联度研究[D].江西师范大学,2023.DOI:10.27178/d.cnki.gjxsu.2023.001604.

[10]刘楚群,汤娉娉.老年人口语流利性的衰老关联度研究[J].天津师范大学学报(社会科学版),2024,(01):73-86.

[11]陈玮.轻度认知障碍老年人口语非流利性研究[D].西北民族大学,2024.DOI:10.27408/d.cnki.gxmzc.2024.000183.

[12]王长江,冯淑芸,李子涵,等.论老年人语用能力评估方法[J].黑龙江人力资源和社会保障,2022,(09):49-51.

[13] First M B. Diagnostic and statistical manual of mental disorders, 5th Edition, and clinical utility[J]. J Nerv Ment Dis, 2013, 201: 727-729.

[14] Khachaturian Z S. Revised criteria for diagnosis of Alzheimer's disease: National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7: 253-256.

[15] Dubois B, Feldman H H, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13: 614-629.

[16] Alzheimer's Association. 2015 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2015, 11: 332-384.

[17] Petersen R C. Clinical practice. Mild cognitive impairment[J]. N Engl J Med, 2011, 364: 2227-2234.

[18]党伟超,周格宇,兰锦谋,等.基于大语言模型的老年人语音交互系统设计[J].数字技术与应用,2024,42(12):178-181.

[19]周德宇.我国老年人话语多模态语料库建设与反思[J].语言学研究,2024,(01):20-34.

[20]Orimaye, S. O., Wong, J. S. M., Golden, K. J., Wong, C. P., & Soyiri, I. N. Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers[J]. BMC bioinformatics, 2017, 18(1): 1-13.

[21]Elsey, C., Drew, P., Jones, D., Blackburn, D., Wakefield, S., Harkness, K., et al. Towards diagnostic conversational profiles in patients with memory complaints[J]. Journal of Alzheimer's Disease, 2015, 48(s1): S63-S76.

[22]张永伟,范明威.基于自然语言处理技术的老年人多模态语料库切分标注平台研制[J].语言学研究,2024,(01):49-61.

[23]曹畅.重塑陪伴:技术接受模型之下老年群体情感支持需求及人工智能的使用研究[J].科技传播,2025,17(02):9-17.

[24]Kapoor A ,Ho K J ,Jang Y J , et al.Robust reference group normative data for neuropsychological tests accounting for primary language use in Asian American older adults.[J].Journal of the International Neuropsychological Society : JINS,2024,30(4):1-8.

[25]张惟, 周强. 面向认知障碍筛查的老年人语言计算研究综述[J]. 中文信息学报, 2021, 35(8): 1-15.

[26]黄立鹤, 车伊然. 人工智能技术赋能老年语言学的发展与思考[J]. 云南师范大学学报(哲学社会科学版), 2024, 56(05): 33-43.

[27]孙涵.人工智能背景下以服务为核心的老年教育模式研究与探索[J].广州广播电视大学学报,2021,21(02):19-24+108.

[28]沈骑,顾钧仪.数字社会建设中的老年友好语言服务研究[J].华东师范大学学报(哲学社会科学版),2023,55(04):54-62+177.

[29]沈骑,顾钧仪.数字社会建设中的老年友好语言服务研究[J].华东师范大学学报(哲学社会科学版),2023,55(04):54-62+177.

[30]林思仪,刘思芸,赵婷,等.老年群体使用公共智能设备的语言障碍类型分析[J].南方语言学,2022,(01):245-258.

[31]孙梦楚, 高焕沙, 薛群慧. 智慧养老产品开发现状研究[J]. 经济师, 2016(4).15-16

[32] Deutsch I, Erel H, Paz M. Home robotic devices for older adults: Opportunities and concerns[J]. Computers in Human Behavior, 2019.

[33]王春辉. 自然人、机器人和数字人“三人”共生时代的语言生活[J]. 语言战略研究, 2024(3).9-10

[34]Ogawa K, Nishio S, Koda K, et al. Telenoid: Tele-presence android for communication[C]//ACM SIGGRAPH 2011 emerging technologies. Canada, 2011: 1.

[35]李学峰.人工智能在网络支付数据处理和隐私保护中的应用研究[J].信息记录材料,2025,26(09):173-175.

[36]刘杰.大语言模型增强的企业端到端数据治理研究与应用[D].电子科技大学,2025.

[37]孙金花.信息化浪潮下老年教育数据安全与隐私保护探索[J].中国信息化,2024,(08):83-85.

[38]J S H ,Trish R ,A C E , et al.Retirement Decision-Making among Registered Nurses and Allied Health Professionals: A Descriptive Analysis of Canadian Longitudinal Study on Aging Data.[J].Healthcare policy = Politiques de sante,2019,15(2):20-27.

[39]Albon R .Dialectology Meets Typology: Dialect Grammar from a Cross-Linguistic Perspective (review)[J].Language,2007,82(4):953-953.

[40]Werner A .Dialectology meets Typology. Dialect Grammar from a Cross-Linguistic Perspective[J].Linguistische Berichte,2006,2006(205):95-102.

[41]杨银银,林贞贞.方言-普通话双言者语素意识跨语言迁移研究——以莆田话-普通话双言者为例[J].安徽工业大学学报(社会科学版),2018,35(05):52-57.

[42]王芳.重叠式功能跨语言研究综述[J].晋中学院学报,2012,29(02):99-102.

Abstract: With the acceleration of global aging, gerolinguistics, an interdisciplinary field focusing on the changes, usage characteristics, and rehabilitation of language abilities in the elderly, has gained increasing attention. In recent years, artificial intelligence technology, with its powerful data processing, pattern recognition, and interaction capabilities, has provided new driving forces for the research and application of gerolinguistics. This article systematically reviews the frontier applications of artificial intelligence in gerolinguistics, including early screening and diagnosis of cognitive impairments based on natural language processing and deep learning, personalized and immersive language rehabilitation training, multimodal elderly language data mining and analysis, as well as age-appropriate language services and communication assistance technologies. It conducts an in-depth analysis of the current key challenges facing technology accuracy, data security and privacy protection, dialect and multilingual adaptation, etc. Based on this analysis, it proposes countermeasures from the perspectives of technology optimization, data governance, and linguistic resource development, and looks ahead to future directions such as multimodal integration, large model-driven personalized services, intelligent health management, and interdisciplinary collaboration, to better empower the research and practice of gerolinguistics with artificial intelligence.

Keywords: Artificial Intelligence; Gerolinguistics; Language Disorders; Multimodal Technology; Language Rehabilitation.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值