- 博客(14)
- 收藏
- 关注
原创 FPGA初学者__个人学习笔记(四)_有符号数相加 溢出 问题
简介在学习FPGA时,整理的一些问题,慢慢积累,期待自己的进步。个人邮箱: 1149025224@qq.com欢迎交流!两个8bit有符号数相加有符号数溢出发生有两种情况:正正相加得负,负负相加得正(其实负负相加是各自的补码相加)。module top_module ( input [7:0] a, input [7:0] b, output [7:0] s, output overflow); // assign s = a + b; as
2020-06-13 16:25:40
2164
原创 PYNQ-Z2 学习总结 (一)无法正常启动板子 无法访问板载文件
刚入手了铱元素科技的PYNQ-Z2,遇到一些问题,特此记录。个人邮箱 1149025224@qq.com问题一 无法正常启动开机问题详述:只有电源灯亮解决工程:重新烧写镜像文件之前,格式化SD卡,方法是在cmd中用disk命令行。可参考如何修复烧写失败的SD卡。烧写工具选择Win32DiskImager1.0.0注意跳线帽的位置,注意SD卡卡槽是否松动,可以多插拔几次。问题二 无法访问板载文件问题详述:PYNQ用一根网线连在路由器上,电脑也连在同一个路由器上,但是在资源管理器中输入/
2020-06-03 11:10:52
3306
5
原创 零基础入门CV赛事-Task5 模型集成
学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习集成学习方法目的是提高预测精度;方法有:Stacking、Bagging、Boosting等,例如在机器学习中,对10个CNN模型可以使用如下方式进行集成:对预测的结果的概率值进行平均,然后解码为具体字符;对预测的字符进行投票,得到最终字符。在深度学习中,还有如下方法:Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。
2020-06-02 22:12:50
223
原创 零基础入门CV赛事-Task4 模型训练与验证
学习目标理解验证集,验证集是一个与测试集尽可能分布一致的样本集,在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。学会使用Pytorch环境下的模型读取和加载,并了解调参流程理解训练集、验证集和测试集。模型训练与验证使用Pytorch来完成CNN的训练和验证过程,CNN网络结构与之前的章节中保持一致。我们需要完成的逻辑结构如下:构造训练集和验证集;每轮进行训练和验证,并根据最优验证集精度保存模型。import torch.nn as nnfrom torch.utils.da
2020-05-30 22:06:53
361
原创 FPGA初学者__个人学习笔记(三)_选择器、多路复用器
简介在学习FPGA时,整理的一些问题,慢慢积累,期待自己的进步。个人邮箱: 1149025224@qq.com欢迎交流!2 选 1 选择器先说什么是选择器?好几个女同学向你求婚,你选其中一个当老婆。即多输入单输出。好,做个题这个模块有输入: a, b, sel,输出: outsel 信号作为选择信号,当 sel = 1 时选择 b,sel=0 时选择 a。```pymodule top_module( input a, b, sel, output out );
2020-05-28 09:40:17
1816
原创 FPGA初学者__个人学习笔记(二)_ generate 用法
简介在学习FPGA时,整理的一些问题,慢慢积累,期待自己的进步。个人邮箱: 1149025224@qq.com欢迎交流!generate语句的功能有重复操作时(重复操作指的是对矢量中多个位操作、进行多个模块的实例引用)可以根据某些参数的定义来选择性的执行以编辑的代码。我的理解就是相当于在一个大的代码块中选择合适的小的代码块来执行。分类generate-forgenerate-ifgenerate-case使用generate语句时应注意的点必须有genvar关键字定义for语句的变
2020-05-27 09:23:40
935
原创 零基础入门CV赛事-Task3 字符识别模型
学习目标CNN模型使用pytorch框架构建并运行CNN模型CNN介绍卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。CNN是一种层次模型,输入的是原始的像素数据。CNN通过
2020-05-26 20:49:16
221
原创 零基础入门CV赛事 Task02:数据读取与数据扩增
学习目标学习图像读取学习扩增图片数据集的方法学习用pytorch读取赛提数据图像读取的方法常用的有Pillow和opencv,我选择使用opencv,完全是因为听起来更熟悉(__) 。OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。#代码示例import cv2# 导入Opencv库img = cv2.imread('./c
2020-05-23 20:47:46
265
原创 FPGA初学者__个人学习笔记(一)
简介在学习FPGA时,整理的一些问题,慢慢积累,期待自己的进步。笔记组合always块中用阻塞性,时序always块中用非阻塞性。assign out_assign = sel_b1? sel_b2? b: a:a; #四个条件,三个结果。11,10 . 01,00。组合电路输出必须在所有输入的情况下都有值,所以要给出所有输入情况,并给出所有对应条件下的输出。begin … end中是顺序执行的。always块中是并行执行的。begin…end一般用在if…else和case语句中。另说b
2020-05-22 19:10:50
566
原创 零基础入门CV赛事-赛题理解-数据下载-task1
赛题理解本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第二场 —— 零基础入门CV赛事之街景字符识别。赛题以计算机视觉中字符识别为背景,要求选手预测真实场景下的字符识别,这是一个典型的字符识别问题。通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题思路使用CNN进行定长字符分类task1任务理解赛题下载数据集代码实现数据集的加载# 导包import pandas as pdimport osimport requ
2020-05-20 21:56:32
246
原创 零基础入门数据挖掘-Task5 模型融合
什么是模型融合先产生一组个体学习器,然后利用某种策略将它们结合起来,加强模型效果。周志华和李航老师的书中都证明随着个体学习器数目的增大,集成的错误率将呈指数级下降,最终趋向于零。因此,模型融合被广泛应用。简单来说就是通过对一组的基分类器以某种方式进行组合,以提升模型整体性能的方法。常用模型融合方法多模型投票 VotingClassifier()生成用0填充的数组 np.zeros()s...
2020-04-04 18:52:12
244
原创 零基础入门数据挖掘-Task4 建模调参
学习内容线性回归模型线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择Lasso回归;Ridge回归;决策树;模型对比常用线性模型;常用非线性模型;模型调参贪心调参方法;网格调参方法;贝叶斯调参方法。部分代码示例线性回...
2020-04-01 20:30:35
239
原创 零基础入门数据挖掘 Task3 特征工程
数据的特征工程含义特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的模型准确性。目的对于特征进行进一步分析,并对数据进行处理。一方面是使数据特征明显,另一方面是使数据满足模型的要求。特征工程的结果将直接影响模型的预测结果。内容介绍常见的特征工程包括:异常处理: 通过箱线图(或 3-Sigma)分析删除异常值; BOX-COX 转换(处理有偏...
2020-03-28 20:29:59
270
原创 零基础数据挖掘入门_TASK(1)_二手车交易价格预测-数据的探索性分析EDA
EDA概述目标任务具体步骤载入各种数据科学以及可视化库载入数据数据总览判断数据缺失和异常了解预测值的分布特征分为类别特征和数字特征,并对类别特征查看unique分布及数字特征分析类型特征分析用pandas_profiling生成数据报告总结目标任务了解数据集;了解变量间的相互关系与预测值之间的存在关系;进行数据处理以及特征工程的步骤;对数据进行图表或者文字总结。具体步骤载入各种数...
2020-03-24 20:35:38
296
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人