零基础入门CV赛事-Task4 模型训练与验证

学习目标

理解验证集,验证集是一个与测试集尽可能分布一致的样本集,在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。
学会使用Pytorch环境下的模型读取和加载,并了解调参流程
理解训练集、验证集和测试集。

模型训练与验证

使用Pytorch来完成CNN的训练和验证过程,CNN网络结构与之前的章节中保持一致。我们需要完成的逻辑结构如下:

构造训练集和验证集;
每轮进行训练和验证,并根据最优验证集精度保存模型。

import torch.nn as nn
from torch.utils.data.dataset import Dataset

# class SVHN_Model1(nn.Module):
#     def __init__(self):
#         super(SVHN_Model1, self).__init__()
                
#         model_conv = models.resnet18(pretrained=True)
#         model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
#         model_conv = nn.Sequential(*list(model_conv.children())[:-1])
#         self.cnn = model_conv
        
#         self.fc1 = nn.Linear(512, 11)
#         self.fc2 = nn.Linear(512, 11)
#         self.fc3 = nn.Linear(512, 11)
#         self.fc4 = nn.Linear(512, 11)
#         self.fc5 = nn.Linear(512, 11)
    
#     def forward(self, img):        
#         feat = self.cnn(img)
#         # print(feat.shape)
#         feat = feat.view(feat.shape[0], -1)
#         c1 = self.fc1(feat)
#         c2 = self.fc2(feat)
#         c3 = self.fc3(feat)
#         c4 = self.fc4(feat)
#         c5 = self.fc5(feat)
#         return c1, c2, c3, c4, c5
    
train_loader = torch.utils.data.DataLoader(
#     train_dataset,
    batch_size=10, 
    shuffle=True, 
    num_workers=10, 
)
    
val_loader = torch.utils.data.DataLoader(
#     val_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=10, 
)

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
    print('Epoch: ', epoch)

    train(train_loader, model, criterion, optimizer, epoch)
    val_loss = validate(val_loader, model, criterion)
    
    # 记录下验证集精度
    if val_loss < best_loss:
        best_loss = val_loss
        torch.save(model.state_dict(), './model.pt')

训练模型中的训练代码:

def train(train_loader, model, criterion, optimizer, epoch):
    # 切换模型为训练模式
    model.train()

    for i, (input, target) in enumerate(train_loader):
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

预测模型中的验证代码:

def validate(val_loader, model, criterion):
    # 切换模型为预测模型
    model.eval()
    val_loss = []

    # 不记录模型梯度信息
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            val_loss.append(loss.item())
    return np.mean(val_loss)

模型的保存和加载:

torch.save(model_object.state_dict(), 'model.pt')
model.load_state_dict(torch.load(' model.pt')) 

标题模型调参流程

深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成。同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间,如何有效的训练深度学习模型逐渐成为了一门学问。

深度学习有众多的训练技巧,比较推荐的阅读链接有:

http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html
http://karpathy.github.io/2019/04/25/recipe/

学习小结

以深度学习模型的训练和验证为基础,讲解了验证集划分方法、模型训练与验证、模型保存和加载以及模型调参流程。

需要注意的是模型复杂度是相对的,并不一定模型越复杂越好。在有限设备和有限时间下,需要选择能够快速迭代训练的模型。

特此感谢 阿水(天池数据大神,CV爱好者。 公众号:Coggle数据科学 知乎:https://www.zhihu.com/people/finlayliu)。

天池赛事零基础入门语义分割-地表建筑物识别任务是一个面向初学者的语义分割竞赛。任务的目标是利用机器学习和计算机视觉技术,对卫星图像中的地表建筑物进行标记和识别。 在这个任务中,参赛者需要使用给定的训练数据集进行模型训练和优化。训练数据集包含了一系列卫星图像和相应的像素级标注,标注了地表建筑物的位置。参赛者需要通过分析训练数据集中的图像和标注信息,来构建一个能够准确地识别出地表建筑物的模型。 参赛者需要注意的是,语义分割是指将图像中的每个像素进行分类,使得同一类别的像素具有相同的标签。因此,在地表建筑物识别任务中,参赛者需要将地表建筑物区域与其他区域进行区分,并正确地进行标记。这对于初学者来说可能是一个挑战,因此需要掌握基本的图像处理和机器学习知识。 参赛者可以根据自己的理解,选择合适的算法和模型来完成这个任务。常见的方法包括卷积神经网络(CNN),通过设计适当的网络结构和训练方式,提高模型的准确性和泛化能力。同时,数据预处理和数据增强技术也是提高模型性能的关键。参赛者可以通过对数据进行增强和扩充,提高模型的鲁棒性和识别能力。 最后,参赛者需要使用训练好的模型对测试数据集进行预测,并生成预测结果。这些预测结果将用于评估参赛者模型的性能和准确度。评估指标通常包括像素级准确度(Pixel Accuracy)和平均交并比(Mean Intersection over Union),参赛者需要根据这些指标来评估和改进自己的模型。 总之,通过参加这个任务,初学者可以通过实践和挑战来提高自己的图像处理和机器学习技能,并掌握语义分割的基本概念和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值