【NOI 2012】 骑行川藏

  题意:在满足 i,vi0ni=1kisi(viti)2E 前提下最小化 ni=1si/vi


  学习了一下拉格朗日橙子乘子法。
  对于函数 F(x1,x2,,xn) G(x1,x2,,xn) ,在满足 G=c(c) 的前提下求 F 的最小值。我们直观地想象,所有极值点一定满足F=λG。令 fi=F/xi,gi=G/xi ,我们可以得到一系列方程形如 fi=λgi 。再加上原本对 G 的约束G=c总共 n+1 个方程 n+1 个变量,往往问题会变得简单些(?)。然后对于所有可行的 λ 往回代到方程里解出所有变量,然后计算 F ,但每组可行的解不一定是最优值,得要将所有的解算出来代入F里验证才能得到最优解。
  这其中的 λ 就是Lagrange Multiplier里的multiplier啦。


  回到这个题。显然每段路能跑得越快越好,最后一定可以把体力给浪完,所以不等号可以换成等号。
  这样就变成了 G(v1...)=E ,最小化 F(v1...)=ni=1si/vi
  考虑应用拉格朗日乘子法,有
  

1v2i=2λki(viti),i[1,n]

  回想题目里的性质,首先 vi 一定非负,其次 vi 一定不小于 ti 。这些方程的左边是在二四象限的双曲线,右边是一条直线,因为 vi0 所以一定只有一个交点且 λ<0 。因此我们可以知道对于所有 λ<0 每个方程都有唯一解。现在我们只需解出满足 G=E λ 。同样从图像出发,当 λ 增大时, vi 也会增大,使得 G 一定增大,因此G λ 递增。
  至此,我们只需要二分 λ 的值,然后解出每个 vi 的值,判断 G E的关系即可。最后再用二分出来的解算出 F 即为最优解啦。
  时间复杂度O(abn),其中 a 为二分λ的次数, b 为二分每个vi的次数,取个40-50可能差不多吧。。。我是按精度来二分/三分的。。


#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for (int i = a, _ = b; i <= _; i ++)

const int N = 10007;
const double eps = 1e-14;

#define fuck(a,b,x) a*sqr(x)*(x-b)+1

inline double sqr(double x) { return x * x; }

double s[N], k[N], t[N], E;
int n;

double solve(double a, double b) {
  double l = 0, r = 1e6;
  while (r - l > eps) {
    double m1 = l + (r - l) / 3;
    double m2 = r - (r - l) / 3;
    double fl = fuck(a, b, l);
    double fr = fuck(a, b, r);
    double f1 = fuck(a, b, m1);
    double f2 = fuck(a, b, m2);
    if (fl * f1 < 0) r = m1;
    else if (fl * f2 < 0) r = m2;
    else if (f1 * fr < 0) l = m1;
    else if (f2 * fr < 0) l = m2;
    else assert(0);
  }
  return l;
}

double get(double l) {
  double ret = 0;
  rep (i , 1 , n) {
    double x = solve(2 * k[i] * l, t[i]);
    ret += k[i] * sqr(x - t[i]) * s[i];
  }
  return ret;
}

int main() {
  cin >> n >> E;
  rep (i , 1 , n) cin >> s[i] >> k[i] >> t[i];
  double l = -1e10, r = 0;
  while (r - l > eps) {
    double m = l + (r - l) / 2;
    if (get(m) >= E)
      r = m;
    else
      l = m;
  }
  double ans = 0;
  rep (i , 1 , n) {
    double x = solve(2 * k[i] * l, t[i]);
    ans += s[i] / x;
  }
  printf("%.6lf\n", ans);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值