SDNUOJ 1033.采药(01背包问题+状态压缩)

Time Limit: 1000 MS Memory Limit: 32768 KB

Description
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?

Input
输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间(1 <= t <= T)和这株草药的价值(1 <= v <= 100000)。

Output
输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

Sample Input
100 5
77 92
22 22
29 87
50 46
99 90

Sample Output
133

Source
NOIP 2005 普及组

比较详细的解释在下面的链接中:
链接

#include<iostream>
using namespace std;
const int T=1005;//时间(背包容量) 
const int M=105;//药材种类 
int dp[M][T];//状态数组 ,dp[M][T]代表容量为T的背包装编号为M的药材时的最大价值  
struct data{
	int time;//采集药材要占用的时间 
	int value;//药材的价值 
}grass[M];//存放药材数据的结构体数组 
int max(int x,int y)
{
	return x>y?x:y;
}
int main()
{
	//状态数组中的元素已经自动被初始化为了0 ,故不再重复初始化 
	int t,m;
	cin>>t>>m;
	for(int i=1;i<=m;++i)
	{
		cin>>grass[i].time>>grass[i].value;//读入药材数据并对他们编号 
	}
	for(int i=1;i<=m;++i)
	{
		for(int j=1;j<=t;++j)
		{
			if(j>=grass[i].time)//如果能采集当前的药材 
			{
				dp[i][j]=max(grass[i].value+dp[i-1][j-grass[i].time],dp[i-1][j]);
				//比较装下当前药材的总价值和不装当前药材总价值的大小,取大的 
			}
			else//如果不能采集当前的药材 
			{
				dp[i][j]=dp[i-1][j];//那么和此容量的背包装上一个药材时的最大价值相同 
			}
		}
	}
	cout<<dp[m][t]<<endl;//输出答案 
	return 0;
}

可以将二维数组压缩成一维数组,但是j要从后往前遍历,因为只有这样才能保证用到的状态是上一层的(因为前面的那些状态还没有被当前层改变),实际上没有进行改变之前的dp[j]的值是继承自上一层的。假如j从前往后遍历,那么后面计算是用到的状态是这一层计算出来的状态,与状态转移方程不符,所以不能那样做。
下面是代码:

#include<iostream>
using namespace std;
const int T=1005;//时间(背包容量) 
const int M=105;//药材种类 
int dp[T];//状态数组 ,dp[M][T]代表容量为T的背包装编号为M的药材时的最大价值  
struct data{
	int time;//采集药材要占用的时间 
	int value;//药材的价值 
}grass[M];//存放药材数据的结构体数组 
int max(int x,int y)
{
	return x>y?x:y;
}
int main()
{
	//状态数组中的元素已经自动被初始化为了0 ,故不再重复初始化 
	int t,m;
	cin>>t>>m;
	for(int i=1;i<=m;++i)
	{
		cin>>grass[i].time>>grass[i].value;//读入药材数据并对他们编号 
	}
	for(int i=1;i<=m;++i)
	{
		for(int j=t;j>=grass[i].time;--j)//到grass[i].time就行了,因为下面的j全都小于它,继承上一层的结果就彳亍,不用进行操作。
		{
			dp[j]=max(dp[j],dp[j-grass[i].time]+grass[i].value);//状态压缩 
		}
	}
	cout<<dp[t]<<endl;//输出答案 
	return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页