辗转相除法(欧几里得算法)(gcd)模板及其原理

本文介绍了使用递归算法实现最大公约数(GCD)的方法,基于欧几里得定理。通过两种不同的证明方法展示定理的正确性,即通过数论推导和数学归纳法。该算法以除数和余数不断迭代,直到余数为0,此时除数即为最大公约数。
摘要由CSDN通过智能技术生成

下面给出学长教的模板:

typedef long long ll;
ll gcd(ll a,ll b)
{
	return b==0?a:gcd(b,a%b);
}

其计算原理依赖于以下定理:
定理:两个整数的最大公约数等于其中较小的那个数(也就是除数)和两数相除余数的最大公约数。最大公约数(Greatest Common Divisor)缩写为GCD。

对于代码的解释:
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数。这一操作可以利用递归实现。

以下是对上面定理的证明,摘自百度百科链接
证法一
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r<b),则r = a mod b
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d=m,由等式右边可知m为整数,因此d|r
因此d也是b,a mod b的公约数
假设d是b,a mod b的公约数, 则d|b,d|(a-k*b),k是一个整数。
进而d|a.因此d也是a,b的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
证法二
假设c = gcd(a,b),则存在m,n,使a = mc, b = nc;
令r = a mod b,即存在k,使r = a-kb = mc - knc = (m-kn)c;
故gcd(b,a mod b) = gcd(b,r) = gcd(nc,(m-kn)c) = gcd(n,m-kn)c;
则c为b与a mod b的公约数;
假设d = gcd(n,m-kn), 则存在x,y, 使n = xd, m-kn = yd; 故m = yd+kn = yd+kxd = (y+kx)d;
故有a = mc = (y+kx)dc, b = nc = xdc; 可得 gcd(a,b) = gcd((y+kx)dc,xdc) = dc;
由于gcd(a,b) = c, 故d = 1;
即gcd(n,m-kn) = 1, 故可得gcd(b,a mod b) = c;
故得证gcd(a,b) = gcd(b,a mod b).
注意:两种方法是有区别的。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值