华为OD试题之最小步骤数

该代码定义了一个函数minsteps,用于解决给定正整数数组中,从第一个元素开始按规则找到到达最后一个元素所需的最小步数问题。如果路径不可达,则返回-1。
摘要由CSDN通过智能技术生成

最小步骤数
题目描述
一个正整数数组,设为nums
最大为100个成员
求从第一个成员开始正好走到数组最后一个成员所使用的最小步骤数

要求:

第一步,必须从第一元素起,且1 <= 第一步步长 < len / 2 (len为数组长度)
从第二步开始只能以所在成员的数字走相应的步数,不能多不能少,如果目标不可达返回-1,只输出最小的步骤数量
只能向数组的尾部走不能向回走
输入描述
一个正整数数组,元素用空格分割
数组长度 < 100

输出描述
正整数,最小步数
不存在输出-1

def minsteps(str):
    list2=[]
    list1= [int(x) for x in str.split(" ")]
    end=list1[-1]
    print(list1)
    for i,j in enumerate(list1):
        if j ==end:
            list2.append(i)
    print(list2)
    if list2[1]-list2[0]>=1 and list2[0]<int(len(list1)/2):
        if list2[-1]-list2[-2]!=end:
            print("-1")
        else:
            print(list2[-1]-list2[-2])

    else:
        print("-1")

if __name__ == '__main__':
    str="1 2 3 7 1 5 9 3 2 1"
    str2="7 5 9 4 2 6 8 3 5 4 3 9"
    # str=str(input())
    minsteps(str2)
对于华为OD机试中的最小步骤问题,我们可以使用Python来解决。这个问题可以被理解为在一个矩阵中从起始点到目标点的最短路径长度。 首先,我们可以定义一个函来计算两个点之间的距离。我们可以使用欧几里得距离来计算两个点之间的直线距离。 接下来,我们可以使用广度优先搜索(BFS)算法来找到从起始点到目标点的最短路径。BFS算法是一种逐层搜索的方法,从起始点开始,依次搜索与当前点相邻的点,直到找到目标点。 我们可以使用一个队列来存储待访问的节点,并使用一个visited集合来记录已经访问过的节点。我们还可以使用一个字典来保存节点之间的距离。我们将起始点添加到队列和visited集合中,并初始化距离字典为0。 在每一次循环中,我们从队列中取出一个节点,并遍历它的相邻节点。如果相邻节点未被访问过,我们将其添加到队列中,并更新距离字典中相邻节点的距离为当前节点的距离加上1。当我们找到目标点时,我们可以返回距离字典中目标点的值。 如果我们在遍历所有节点后仍然没有找到目标点,说明目标点不可达,我们可以返回一个特定的值来表示这种情况,比如-1。 最后,我们可以调用这个函来解决问题,传入起始点和目标点的坐标。根据返回的结果,我们可以判断最小步骤是否存在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值