找终点 给定一个正整数数组

给定一个不超过100个元素的正整数数组,从第一个元素开始,按照数组元素值作为步长前进,求达到数组最后一个元素所需的最小步骤数。要求第一步步长在1到数组长度的一半之间,后续步长依据当前位置元素值,不能回退,若无法到达终点则输出-1。
摘要由CSDN通过智能技术生成

注意!答案仅作为参考(实际考试中下列代码通过用例100%,但不代表最优解)
一个正整数数组 设为nums
最大为100个成员
求从第一个成员开始正好走到数组最后一个成员所使用的最小步骤数
3 5 9 4 2 6 8 3 5 4 3 9
要求:
1. 第一步 必须从第一元素起 且 1<=第一步步长<len/2 (len为数组长度)
2. 从第二步开始只能以所在成员的数字走相应的步数,不能多不能少,
如果目标不可达返回-1
只输出最小的步骤数量
3. 只能向数组的尾部走不能向回走

输入描述:
有正整数数组 空格分割
数组长度<100

输出描述 :
正整数 最小步数
不存在输出-1

     例子:
     输入
         7 5 9 4 2 6 8 3 5 4 3 9
     输出
        2
     第一个可选步长选择2
     从第一个成员7开始走两步到9
     第二步:从9经过9个成员到最后

     例子:
     输入
      1 2 3 7 1 5 9 3 2 1
     输出
      -1
     */
以下是使用分枝限界法解单源最短路径的C++代码: ```c++ #include <iostream> #include <queue> #include <vector> #include <cstring> #define MAX 100005 #define INF 0x3f3f3f3f using namespace std; int n,m,s; int head[MAX],cnt; struct Edge{ int to,nxt,w; }edge[MAX]; inline void add_edge(int u,int v,int w){ edge[++cnt].to=v; edge[cnt].w=w; edge[cnt].nxt=head[u]; head[u]=cnt; } struct Node{ int u,dist; bool operator < (const Node &A) const{ return dist>A.dist; } }; priority_queue<Node> q; int dis[MAX],vis[MAX]; int dijkstra(int s){ memset(dis,INF,sizeof(dis)); memset(vis,0,sizeof(vis)); dis[s]=0; q.push({s,0}); while(!q.empty()){ Node x=q.top(); q.pop(); int u=x.u; if(vis[u]) continue; vis[u]=1; for(int i=head[u];i;i=edge[i].nxt){ int v=edge[i].to; if(dis[v]>dis[u]+edge[i].w){ dis[v]=dis[u]+edge[i].w; if(!vis[v]) q.push({v,dis[v]}); } } } return dis[n]; } struct P{ int u,dist,depth; bool operator < (const P &A) const{ return dist>A.dist; } }; priority_queue<P> q1; int ans=INF; void dfs(int u,int depth,int cost){ if(u==n) ans=min(ans,cost); if(depth==n-1) return; for(int i=head[u];i;i=edge[i].nxt){ int v=edge[i].to; if(cost+edge[i].w+(n-depth-1)*dijkstra(v)>=ans) continue; q1.push({v,cost+edge[i].w,depth+1}); } while(!q1.empty()){ P x=q1.top(); q1.pop(); dfs(x.u,x.depth,x.dist); } } int main(){ cin>>n>>m>>s; for(int i=1;i<=m;i++){ int u,v,w; cin>>u>>v>>w; add_edge(u,v,w); } dfs(s,0,0); if(ans==INF) cout<<"No solution"<<endl; else cout<<ans<<endl; return 0; } ``` 对于该代码的解释如下: 1. 定义了一个Edge结构体来表示图中的一条边; 2. 定义了一个add_edge函数来向邻接表中添加边; 3. 定义了一个Node结构体来表示Dijkstra算法中的节点; 4. 定义了一个优先队列q来存储Dijkstra算法中的节点,并重载了小于运算符,使得队首元素为最小元素; 5. 定义了dis数组来存储源点到各个顶点的最短路径长度,vis数组来标记各个顶点是否已经被访问过; 6. 实现了Dijkstra算法,使用优先队列q来维护优先级; 7. 定义了一个P结构体来表示分枝限界法中的节点; 8. 定义了一个优先队列q1来存储分枝限界法中的节点,并重载了小于运算符,使得队首元素为最小元素; 9. 定义了ans变量来存储最终的结果,初始化为无穷大; 10. 实现了dfs函数,使用优先队列q1来维护优先级,通过比较当前节点到终点的最短路径长度和当前已知的最短路径长度ans来进行剪枝; 11. 在主函数中读入图的信息,调用dfs函数解结果,并输出结果。 该代码的时间复杂度为$O(nm\log n)$,其中$n$为顶点数,$m$为边数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Brown_ bear

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值