2014年第五届蓝桥杯省赛C语言B组
题目来源:蓝桥杯
作者:GGG166
第一题
题目:啤酒和饮料
啤酒每罐2.3元,饮料每罐1.9元。小明买了若干啤酒和饮料,一共花了82.3元。
我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒。
注意:答案是一个整数。请通过浏览器提交答案。
不要书写任何多余的内容(例如:写了饮料的数量,添加说明文字等)。
答案:11
思路:
分析可得出饮料一定小于50瓶的,再用双重循环来列举啤酒和饮料的数目,从而的出啤酒的量;为了方便计算,我把价格和花费都扩大10倍,(见代码1)。
代码1:
#include<iostream>
using namespace std;
int main()
{
int a,b;//a为饮料,b为啤酒
for(a=1;a<50;a++){
for(b=0;b<a;b++){
if(b*23+a*19==823){
cout<<b<<endl;
break;
}
}
}
return 0;
}
第二题
题目:却面条
一根高筋拉面,中间切一刀,可以得到2根面条。
如果先对折1次,中间切一刀,可以得到3根面条。
如果连续对折2次,中间切一刀,可以得到5根面条。
那么,连续对折10次,中间切一刀,会得到多少面条呢?
答案是个整数,请通过浏览器提交答案。不要填写任何多余的内容。
答案:1025
思路:
模拟切面条过程
切得次数 得到的面条数
1 2 =1+2^0
2 3=2+1=1+2^1
3 5=3+2 =1+2^2
4 9==5+4=1+2^3
5 17=9+8 =1+2^4
… …
从而得出规律,(见代码2)。
代码2:
#include<iostream>
using namespace std;
int main()
{
int ans=2;
for(int i=1;i<=10;i++){
ans=2*ans-1;
}
cout<<ans<<endl;
return 0;
}
第三题
题目:李白打酒
话说大诗人李白,一生好饮。幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。
请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。
注意:通过浏览器提交答案。答案是个整数。不要书写任何多余的内容。
答案:14
思路一:
用一个数组在存放花与店的情况,再用全排列依次检验每一种情况(见代码3-1)。
思路二:
用递归的方法来求出花与店的情况,在此次检验每一种情况(见代码3-2)。
代码3-1:
#include<iostream>
#include<algorithm>
using namespace std;
int arr[15]={
0,0,0,0,0,0,0,0,0,0,1,1,1,1,1};//0为花 1为店
int main()
{
int ans=0;
do{
int jiu=2;//出门时的酒
if(arr[14]!=0) continue;
//后一次遇到的不是花,结束该次循环
for(int i=0;i<15;i++){
//循环判断店与花
if(arr[i]==0){
jiu-=1;
}
else{
jiu*=2;
}
}
if(jiu==0) ans++;//满足条件,结果自加
}while(next_permutation(arr,arr+15));
cout<<ans<<endl; //输出
return 0;
}
代码3-2:
#include<iostream>
using namespace std;
int ans=0;
void f(int dian,int hua,int jiu){
if(dian==0&&hua==0&&jiu==1){
//店和花都完了,酒还剩1
ans++;
}
if(dian>0) {
// 遇到店
f(dian-1,hua,jiu*2);
}
if(hua>0){
//遇到花
f(dian,hua-1,jiu-1);
}
}
int main()
{
f(5,9,2);
cout<<ans<<endl; //输出
return 0;
}
第四题
题目:史丰收速算
史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
速算的核心基础是:1位数乘以多位数的乘法。
其中,乘以7是最复杂的,就以它为例。
因为,1/7 是个循环小数:0.142857…,如果多位数超过 142857…,就要进1
同理,2/7, 3/7, … 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
下面的程序模拟了史丰收速算法中乘以7的运算过程。
乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
乘以 7 的进位规律是:
满 142857... 进1,
满 285714... 进2,
满 428571... 进3,
满 571428... 进4,
满 714285... 进5,
满 857142... 进6
请分析程序流程,填写划线部分缺少的代码。
//计算个位
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//计算进位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = '\0';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
//______________________________; //填空
}
}
return 0;
}
//多位数乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
prin