一个简单的机器学习案例:10分钟,训练一个“剪刀石头布”识别器

本文介绍了如何利用tensorflow.js库在网页端构建一个「剪刀石头布」手势识别器。通过加载包含2893张图片的数据集,经过精灵表单处理,选择简单模型进行训练,最终实现高精度识别,特别是石头和剪刀。尽管布的识别精度稍低,但可通过增加更多样本来改进。文章提供了模型测试和实际应用的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.介绍

这是一个利用tensorflow.js库的网页端的网络。
在没有使用TensorFlow.js库之前,想要实现这个功能,需要花很长时间来完成算法编写,包括数据图像的采集、模型的训练、参数的调整,最终结果可能得经过分类模型(如:VGG、ResNet、ShuffleNet等)的卷积层、全连接层,最终以概率的方式呈现,预期效果可以达到,但是花费的时间代价也很大,
利用这个tensorflow.js库可以在网页端完成这些操作,训练包括预测的时间取决于自己使用的计算机。
在这里插入图片描述

二.实现过程

1.数据集

首先这是训练所使用的数据集,其中包含2893张剪刀石头布的图片,所有这些数据都是以白色背景构成的,每幅图像为300×300像素:
http://www.laurencemoroney.com/rock-paper-scissors-dataset/
在这里插入图片描述

2.网页数据集加载

解决浏览器加载图片的限制,使用精灵表单(spritesheet)将一组图像粘合成一个图像,此时,图像中每个像素都变成1像素高清图像,将它们堆叠创建一个保存所有图像的10MB大小的大图像

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值