机器学习,剪刀,石头,布

本文介绍了如何使用TensorFlow进行图像分类,特别是针对剪刀、石头、布的手势识别。通过下载训练图集,建立多分类模型并进行训练,最终达到0.98以上的准确率。模型能够成功识别不同手势,包括中国和外国的剪刀差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


当前AI Machine Learning 异常火爆,希望在MCU上使用机器学习,做图像识别的工作。看到一个剪刀,石头,步的学习程序,给大家分享一下。

TensorFlow AI人工智能及Machine Learning

通过学习Laurence Moroney 《AI and Machine Learning for Coder》书开始学习人工智能和机器学习。

随着视觉的发展,我们从淘宝上花费20元就可以买到一个摄像头,并且这个摄像头的控制设备支持机器学习库ML Lite,使人工智能应用进入可凡人世界。在书上我们可以看到一些应用的例子,比如:

  • 数字识别,通过图像可以识别数字0-9
  • 穿戴服装识别,识别鞋,靴子,高跟鞋,T-shirt, 头套等
  • 人-马分类识别
  • 手势识别 - 剪刀,石头,步。英文,paper,rock,scissor。

下面介绍一个图像分类的paper,rock,scissor,我们中国人说的剪刀,石头,布(包袱)的应用。

训练图集的下载

图像下载在树上说的网站是:
https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip
新的地址:https://storage.googleapis.com/learning-datasets/rps.zip
用浏览器直接打开就可以下载这个压缩文件。可以自己释放这个文件到响应的目录,也可以用一段python小程序实现:

import urllib.request
import zipfile
url = "https://storage.googleapis.com/learning-datasets/rps.zip"

file_name = "rps.zip"
training_dir = 'tmp/rps/'
file_name = training_dir + flie_name
urllib.request.urlretrieve(url, file_name)

zip_ref = zipfile.ZipFile(file_name, 'r')
zip_ref.extractall(training_dir)
print('下载完成!')
zip_ref.close()

这样,我们就在我们的工作目录下面创建了一个结构:
在这里插入图片描述
上面的每个目录中有840个图像,比如,在paper下有如下类似的图像文件:
在这里插入图片描述
这些手势表示的是各种的包袱的图像。还有石头和剪刀的画面如下:
在这里插入图片描述
下面是剪刀的分类训练画面
在这里插入图片描述
从这些手势上看出来,老外的剪刀和我们中国的剪刀似乎不太一样。他们的剪刀是3个指头,我们的剪刀比他们的狠,就两个指头。

建立分类模型并用图像进行训练

这些模型是基于TensorFlow的框架建立的。并进行了多分类优化。

import 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值