例题1-1 圆柱体的表面积
输入底面半径r和高h,输出圆柱体的表面积,保留3位小数,格式见样例。
样例输入:
3.5 9
样例输出:
Area = 274.889
分析:很简单的一道题,利用数学公式就可以求出来。但是我是用C++写的,所以要考虑一下怎么控制C++的精度输出,这个我还真不知道,特意去百度了一下,懂了一些皮毛。
精度控制
1. 如果使用了控制符,在程序单位的开头除了要加iostream头文件外,还要加iomanip头文件。#include
2.举例: 输出双精度数。
double a=123.456789012345;对a赋初值
(1) cout<
#include <iostream>
#include <iomanip>
using namespace std;
int main( )
{
double a=123.456,b=3.14159,c=-3214.67;
cout<<setiosflags(ios∷fixed)<<setiosflags(ios∷right)
<<setprecision(2);
cout<<setw(10)<<a<<endl;
cout<<setw(10)<<b<<endl;
cout<<setw(10)<<c<<endl;
return 0;
输出如下:
123.46 (字段宽度为10,右对齐,取两位小数)
3.14
-3214.67
先统一设置定点形式输出、取两位小数、右对齐。这些设置对其后的输出均有效(除非重新设置),而setw只对其后一个输出项有效,因此必须在输出a,b,c之前都要写setw(10)。
下面是这道题的代码:
#include<iostream>
#include<iomanip>
#include<math.h>
using namespace std;
int main()
{
const double pi = acos(-1.0);
double r,h,s1,s2;
cin>>r>>h;
s1=pi*r*r;
s2=s1*2+2*pi*r*h;
cout<<setiosflags(ios::fixed)<<setprecision(4)<<s2<<endl;
return 0;
}
总结:
简单题也有小收获,还学到了PI的表示方法const double PI=acos(-1.0)
学会了控制精度。将两者结合起来就可以输出PI的任意位,经过测试,最多可以精确到小数点后面48位。
下面是源码:
#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
int main()
{
const double a=acos(-1.0);
cout<<setiosflags(ios::fixed)<<setprecision(50)<<a;
return 0;
}