哦,这道题我真的不会了

前言

我实在是有点不学无术了,看到了这道题竟然试了好久都没有试出来,其实一想也不是那么难。但是我今天太困了,不想做题了,写个博客提提神。

题面

求解不定积分:

∫ 1 ( 1 + x 2 ) 3 d x \int \frac{1}{\sqrt{(1+x^2)^3}}\text{d}x (1+x2)3 1dx

哲明大佬的做法

三角换元,令 x = tan ⁡ u , d x = sec ⁡ 2 u d u x=\tan u,\text{d}x=\sec^2 u\text{d}u x=tanu,dx=sec2udu

∫ 1 ( 1 + x 2 ) 3 d x = ∫ sec ⁡ 2 u d u sec ⁡ 3 u = ∫ cos ⁡ x d u = sin ⁡ u + C = sin ⁡ ( arctan ⁡ x ) + C \int \frac{1}{\sqrt{(1+x^2)^3}}\text{d}x=\int \frac{\sec^2u\text{d}u}{\sec^3 u}=\int \cos x\text{d}u=\sin u+C=\sin (\arctan x)+C (1+x2)3 1dx=sec3usec2udu=cosxdu=sinu+C=sin(arctanx)+C

子石大佬的做法

倒代换,令 x = 1 t , d x = − t − 2 d t x=\frac{1}{t}, \text d x=-t^{-2}\text d t x=t1,dx=t2dt,不妨令 x > 0 x>0 x>0

∫ − t − 2 ( 1 + 1 t 2 ) 3 d t = ∫ − t d t ( t 2 + 1 ) 3 2 = − 1 2 ∫ ( t 2 + 1 ) − 3 2 d ( t 2 + 1 ) = ( t 2 + 1 ) − 1 2 + C = x 1 + x 2 + C \int \frac{-t^{-2}}{\left(\sqrt{1+\frac{1}{t^2}}\right)^3}\text d t=\int \frac{-t\text d t}{(t^2+1)^{\frac{3}{2}}}=-\frac{1}{2}\int(t^2+1)^{-\frac{3}{2}}\text d (t^2+1)=(t^2+1)^{-\frac{1}{2}}+C=\frac{x}{\sqrt{1+x^2}}+C (1+t21 )3t2dt=(t2+1)23tdt=21(t2+1)23d(t2+1)=(t2+1)21+C=1+x2 x+C

不难说明 x < 0 x<0 x<0 是不定积分也能够得到相同的结果。

令人疑惑

如果上述两种积分方式得到的结构均正确,那么一定有

sin ⁡ ( arctan ⁡ x ) = x 1 + x 2 + C \sin(\arctan x)=\frac{x}{\sqrt{1+x^2}}+C sin(arctanx)=1+x2 x+C

证明方式非常多,例如换元(令 x = tan ⁡ u x=\tan u x=tanu),例如对等号两侧同时求导,这里给出一种比较通用的做法解决三角函数与反三角函数复合展开的问题。

三角函数与反三角函数复合

y = sin ⁡ ( arctan ⁡ x ) y=\sin(\arctan x) y=sin(arctanx)

如果, sin ⁡ \sin sin 里面复合的函数是 arcsin ⁡ \arcsin arcsin 那该多好,如果我们想要用 arcsin ⁡ \arcsin arcsin 替代 arctan ⁡ \arctan arctan,不妨考虑先用 sin ⁡ \sin sin 表示 tan ⁡ \tan tan,然后再求反函数。

tan ⁡ x = sin ⁡ x 1 − sin ⁡ 2 x = y \tan x=\frac{\sin x}{\sqrt{1-\sin^2 x}}=y tanx=1sin2x sinx=y

两侧同时平方

y 2 = sin ⁡ 2 x 1 − sin ⁡ 2 x → sin ⁡ 2 x = y 2 1 + y 2 y^2=\frac{\sin^2x}{1-\sin^2x}\to \sin^2x=\frac{y^2}{1+y^2} y2=1sin2xsin2xsin2x=1+y2y2

sin ⁡ x \sin x sinx y y y 同号( cos ⁡ x > 0 \cos x>0 cosx>0)得到

sin ⁡ x = y 1 + y 2 \sin x=\frac{y}{\sqrt{1+y^2}} sinx=1+y2 y

也就是说

x ( y ) = arcsin ⁡ y 1 + y 2 x(y)=\arcsin \frac{y}{\sqrt{1+y^2}} x(y)=arcsin1+y2 y

y = tan ⁡ x y=\tan x y=tanx 的反函数 x = arctan ⁡ y x=\arctan y x=arctany,换言之

arctan ⁡ y = arcsin ⁡ y 1 + y 2 \arctan y= \arcsin \frac{y}{\sqrt{1+y^2}} arctany=arcsin1+y2 y

因此

sin ⁡ ( arctan ⁡ x ) = x 1 + x 2 \sin(\arctan x)= \frac{x}{\sqrt{1+x^2}} sin(arctanx)=1+x2 x

得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值