前言
我实在是有点不学无术了,看到了这道题竟然试了好久都没有试出来,其实一想也不是那么难。但是我今天太困了,不想做题了,写个博客提提神。
题面
求解不定积分:
∫ 1 ( 1 + x 2 ) 3 d x \int \frac{1}{\sqrt{(1+x^2)^3}}\text{d}x ∫(1+x2)31dx
哲明大佬的做法
三角换元,令 x = tan u , d x = sec 2 u d u x=\tan u,\text{d}x=\sec^2 u\text{d}u x=tanu,dx=sec2udu
∫ 1 ( 1 + x 2 ) 3 d x = ∫ sec 2 u d u sec 3 u = ∫ cos x d u = sin u + C = sin ( arctan x ) + C \int \frac{1}{\sqrt{(1+x^2)^3}}\text{d}x=\int \frac{\sec^2u\text{d}u}{\sec^3 u}=\int \cos x\text{d}u=\sin u+C=\sin (\arctan x)+C ∫(1+x2)31dx=∫sec3usec2udu=∫cosxdu=sinu+C=sin(arctanx)+C
子石大佬的做法
倒代换,令 x = 1 t , d x = − t − 2 d t x=\frac{1}{t}, \text d x=-t^{-2}\text d t x=t1,dx=−t−2dt,不妨令 x > 0 x>0 x>0
∫ − t − 2 ( 1 + 1 t 2 ) 3 d t = ∫ − t d t ( t 2 + 1 ) 3 2 = − 1 2 ∫ ( t 2 + 1 ) − 3 2 d ( t 2 + 1 ) = ( t 2 + 1 ) − 1 2 + C = x 1 + x 2 + C \int \frac{-t^{-2}}{\left(\sqrt{1+\frac{1}{t^2}}\right)^3}\text d t=\int \frac{-t\text d t}{(t^2+1)^{\frac{3}{2}}}=-\frac{1}{2}\int(t^2+1)^{-\frac{3}{2}}\text d (t^2+1)=(t^2+1)^{-\frac{1}{2}}+C=\frac{x}{\sqrt{1+x^2}}+C ∫(1+t21)3−t−2dt=∫(t2+1)23−tdt=−21∫(t2+1)−23d(t2+1)=(t2+1)−21+C=1+x2x+C
不难说明 x < 0 x<0 x<0 是不定积分也能够得到相同的结果。
令人疑惑
如果上述两种积分方式得到的结构均正确,那么一定有
sin ( arctan x ) = x 1 + x 2 + C \sin(\arctan x)=\frac{x}{\sqrt{1+x^2}}+C sin(arctanx)=1+x2x+C
证明方式非常多,例如换元(令 x = tan u x=\tan u x=tanu),例如对等号两侧同时求导,这里给出一种比较通用的做法解决三角函数与反三角函数复合展开的问题。
三角函数与反三角函数复合
y = sin ( arctan x ) y=\sin(\arctan x) y=sin(arctanx)
如果, sin \sin sin 里面复合的函数是 arcsin \arcsin arcsin 那该多好,如果我们想要用 arcsin \arcsin arcsin 替代 arctan \arctan arctan,不妨考虑先用 sin \sin sin 表示 tan \tan tan,然后再求反函数。
tan x = sin x 1 − sin 2 x = y \tan x=\frac{\sin x}{\sqrt{1-\sin^2 x}}=y tanx=1−sin2xsinx=y
两侧同时平方
y 2 = sin 2 x 1 − sin 2 x → sin 2 x = y 2 1 + y 2 y^2=\frac{\sin^2x}{1-\sin^2x}\to \sin^2x=\frac{y^2}{1+y^2} y2=1−sin2xsin2x→sin2x=1+y2y2
令 sin x \sin x sinx 与 y y y 同号( cos x > 0 \cos x>0 cosx>0)得到
sin x = y 1 + y 2 \sin x=\frac{y}{\sqrt{1+y^2}} sinx=1+y2y
也就是说
x ( y ) = arcsin y 1 + y 2 x(y)=\arcsin \frac{y}{\sqrt{1+y^2}} x(y)=arcsin1+y2y
是 y = tan x y=\tan x y=tanx 的反函数 x = arctan y x=\arctan y x=arctany,换言之
arctan y = arcsin y 1 + y 2 \arctan y= \arcsin \frac{y}{\sqrt{1+y^2}} arctany=arcsin1+y2y
因此
sin ( arctan x ) = x 1 + x 2 \sin(\arctan x)= \frac{x}{\sqrt{1+x^2}} sin(arctanx)=1+x2x
得证。