证明非零实数乘法群和实数加法群不同构

前言

上离散课上睡过去了,啊啊啊啊啊啊,感觉血亏(但是太困了,不然人会寄)。。

方法一

假设 G = ( R ∗ , × ) G=(R^*,\times) G=(R,×) H = ( R , + ) H=(R,+) H=(R,+) 同构,假设 σ \sigma σ G G G H H H 上的一一映射。 1 G 1_G 1G G G G 中的单位元, 0 H 0_H 0H H H H 中的单位元。那么一定有:
σ ( 1 G ) = σ ( ( − 1 G ) × ( − 1 G ) ) \sigma(1_G)=\sigma((-1_G)\times(-1_G)) σ(1G)=σ((1G)×(1G))

由于群中幂等元只有单位元,因此一定有 σ ( 1 G ) = 0 H \sigma(1_G)=0_H σ(1G)=0H 因此:

σ ( 1 G ) = σ ( ( − 1 G ) × ( − 1 G ) = σ ( − 1 G ) + σ ( − 1 G ) = 2 σ ( − 1 G ) = 0 H \sigma(1_G)=\sigma((-1_G)\times(-1_G)=\sigma(-1_G)+\sigma(-1_G)=2\sigma(-1_G)=0_H σ(1G)=σ((1G)×(1G)=σ(1G)+σ(1G)=2σ(1G)=0H

得到 σ ( − 1 G ) = 0 H \sigma(-1_G)=0_H σ(1G)=0H,这与 σ \sigma σ 是一一映射矛盾。

方法二

任取 a ∈ G a\in G aG,因为 a ≠ 0 a\neq 0 a=0 ,所以 a ≠ − a a\neq -a a=a ,所以 σ ( a ) ≠ σ ( − a ) \sigma(a)\neq \sigma(-a) σ(a)=σ(a)。不妨令 σ ( a ) = b , σ ( − a ) = c \sigma(a)=b,\sigma(-a)=c σ(a)=b,σ(a)=c,因此有:

σ ( a 2 ) = σ ( a × a ) = σ ( a ) + σ ( a ) = 2 b \sigma\left(a^2\right)=\sigma(a\times a)=\sigma(a)+\sigma(a)=2b σ(a2)=σ(a×a)=σ(a)+σ(a)=2b

类似的,有:

σ ( a 2 ) = σ ( ( − a ) × ( − a ) ) = σ ( − a ) + σ ( − a ) = 2 c \sigma\left(a^2\right)=\sigma((-a)\times (-a))=\sigma(-a)+\sigma(-a)=2c σ(a2)=σ((a)×(a))=σ(a)+σ(a)=2c

因此有:

2 b = 2 c ⇒ b = c 2b=2c\Rightarrow b=c 2b=2cb=c

这与 σ ( a ) ≠ σ ( − a ) \sigma(a)\neq \sigma(-a) σ(a)=σ(a) 矛盾。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值