密码学之Pohlig-Helliman算法求离散对数

对于一个素数p,先求n=p-1并将其分解为x个素数因子,对于每一个因子q及其指数c,应用Pohlig-Helliman算法求解(a0,a1,a3............ac-1)

根据a=(for i=0 to c-1:ai*q^i)+s*q^(s为某一整数) 求得  x个同余式,最后利用中国剩余定理求解离散对数的解


# -*- coding: utf-8 -*-
_author_ = 'xiao_lu'
import sys
import time
the_a={}
#将n进行分解为素数积
def get_result(n):
   i=2
   while n!=1:
      if n%i==0:
           the_a[i]+=1
           n=n/i
      else: i+=1
#扩展欧几里德算法
def extended_euclid(a,b,x,y):
    if b == 0:
         x[0] = 1
         y[0] = 0
         return a
    d = extended_euclid(b, a % b, y, x)
    y[0] -= a / b * x[0]
    return d
#中国剩余定理
def chinese_remainder(b ,w ,len):
    ret = 0;    n = 1
    x = [0];    y = [0]
    for i in range(len):
         n *= w[i];
    for i in range(len):
        m = n / w[i];
        d = extended_euclid(w[i],m,x,y);
        ret = (ret + y[0] * m * b[i]) % n;
    return (n + ret % n) % n;
#主函数  Pohilg-helllman算法
if __name__ == '__main__':
    t1 = time.time()
    print t1
    p,a,b = map(int, sys.stdin.readline().split())
    n = int(p)-1
    #初始化
    for i in range(2,10000):
        the_a.setdefault(i,0)
    # 将n进行分解为素数积
    get_result(int(n))
    chu=[];  yu=[]
    for key, value in the_a.items():
        if value != 0:
            #Pohlig-Helliman算法
            j = 0
            A = []; B = []
            B.append(int(b))
            key1 = key
            while j <= int(value) - 1:
                x = (int(B[j])** (n/(key1)))%int(p)
                for i in range(0, 10000):
                    if x == (int(a)**((i * n) / int(key)))%int(p):
                        A.append(i)
                        break
                B.append(( B[j] * (int(a)**((-i) * (int(key)**j))))%int(p))
                j += 1
                key1 *= key
            s=0
            for ii in range(0,int(value)):
                #求a
                s+=int(A[ii])*(int(key)**ii)
            chu.append(int(key)**int(value))
            yu.append(s)
    #利用中国剩余定理求解同余式组
    print  "log%d %d = %d"%(a,b,(chinese_remainder(yu,chu,len(yu))))
    t2 = time.time()
    print t2


  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
离散对数问题是计算一个数a模p的离散对数x,即满足a^x≡b(mod p)的最小非负整数x。Pohlig-Hellman算法是一种解离散对数问题的算法,具体实现如下: ``` #include<stdio.h> #include<math.h> int prime[100000]; int isprime[100001]; void get_prime(int n) { int cnt = 0; for(int i = 2;i <= n;i++) { if(isprime[i] == 0) { prime[++cnt] = i; } for(int j = 1;j <= cnt;j++) { if(prime[j] * i > n) { break; } isprime[prime[j] * i] = 1; if(i % prime[j] == 0) { break; } } } } long long pow_mod(long long a, long long b, long long p) { long long ans = 1; a %= p; while(b) { if(b & 1) { ans = ans * a % p; } b >>= 1; a = a * a % p; } return ans; } long long inv(long long a, long long p) { return pow_mod(a, p - 2, p); } long long exgcd(long long a, long long b, long long &x, long long &y) { if(b == 0) { x = 1; y = 0; return a; } long long d = exgcd(b, a % b, y, x); y -= (a / b) * x; return d; } long long bsgs(long long a, long long b, long long p) { long long m = ceil(sqrt(p)); long long mi = inv(pow_mod(a, m, p), p); long long aj = b; for(int j = 0;j < m;j++) { int i; for(i = 0;i < m;i++) { if(aj == prime[i]) { return i + j * m; } } aj = aj * mi % p; } return -1; } long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long get_order(long long a, long long p) { long long phi = p - 1; long long tmp = phi; for(int i = 2;i * i <= tmp;i++) { if(tmp % i == 0) { while(tmp % i == 0) { tmp /= i; } long long t = pow_mod(a, phi / i, p); if(t == 1) { phi /= i; } while(t == 1) { t = pow_mod(a, phi / i, p); phi /= i; } } } if(tmp > 1) { long long t = pow_mod(a, phi / tmp, p); if(t == 1) { phi /= tmp; } while(t == 1) { t = pow_mod(a, phi / tmp, p); phi /= tmp; } } return phi; } long long crt(long long a1, long long p1, long long a2, long long p2) { long long x, y; exgcd(p1, p2, x, y); return (a1 * p2 * y % (p1 * p2) + a2 * p1 * x % (p1 * p2)) % (p1 * p2); } long long pohlig_hellman(long long a, long long b, long long p) { long long ord = get_order(a, p); long long m = ceil(sqrt(ord)); long long t = 1; for(int i = 0;i < m;i++) { t = t * a % p; } long long invt = inv(t, p); long long aj = b; for(int j = 0;j < m;j++) { int i; for(i = 0;i < m;i++) { if(aj == pow_mod(a, i, p)) { break; } } aj = aj * invt % p; if(i < m) { return j * m + i; } } long long x = 0; long long pp[100], aa[100]; int cnt = 0; for(int k = 2;k <= p;k++) { if(p % k == 0) { pp[++cnt] = 1; int tmp = p; while(tmp % k == 0) { tmp /= k; pp[cnt] *= k; } long long aa1 = pow_mod(a, ord / pp[cnt], p); long long bb1 = pow_mod(b, ord / pp[cnt], p); long long aj1 = 1; for(int j = 0;j < pp[cnt];j++) { if(aj1 == bb1) { x += (long long)j * pp[cnt] / pp[cnt - 1] * crt(1, pp[cnt - 1], aa[cnt - 1], pp[cnt - 1]); break; } aj1 = aj1 * aa1 % p; } aa[cnt] = aa1; } } return x % ord; } int main() { get_prime(100000); long long a, b, p; scanf("%lld%lld%lld", &a, &b, &p); printf("%lld\n", pohlig_hellman(a, b, p)); return 0; } ``` 注:在使用该代码时,需要输入三个参数a、b、p,其中a和p分别表示离散对数的底数和模数,b表示要离散对数

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值