2.7 离散对数-小步大步算法

文章目录

算法

  在讲之前,首先说明什么是离散对数。离散对数就是给定的一个方程:
a x ≡ b    ( m o d    m ) a^x\equiv b\;(mod\;m) axb(modm)
  方程中a和b以及m都是已知数,a和m互质,求未知数x,这个x就是离散对数。求离散对数使用的算法叫做小步大步算法,英文为Baby-step giant-step algorithm,是Shanks于1971年提出的一种中路相逢算法meet-in-the-middle algorithm
  该算法就是将方程中的x写成 x = n p − q x=np-q x=npq的形式,其中p就是大步giant step,而q就是小步baby step
  既然把x写成 x = n p − q x=np-q x=npq,那么方程就变成了:
a n p − q ≡ b    ( m o d    m ) a^{np-q}\equiv b\;(mod\;m) anpqb(modm)
  把 a − q a^{-q} aq移动到等式右边,就变成了:
a n p ≡ b a q    ( m o d    m ) a^{np}\equiv ba^q\;(mod\;m) anpbaq(modm)
  p的范围取值范围是 [ 1 , ⌈ m n ⌉ ] [1,\lceil\frac{m}{n}\rceil] [1,nm],而q的取值范围就是 [ 0 , n ] [0,n] [0,n]。在p和q在各自取值范围内不断求值,然后遍历匹配,然后匹配到了就可以返回了。对于模幂运算,完全可以使用蒙哥马利乘法,而匹配的话,我直接使用python自带的字典进行。

Python实现

  我直接引用了我之前的蒙哥马利乘法模块。

# _*_ coding:utf-8 _*_

import math
import montgomery


def resolve(a, b, m):
    a = a % m
    b = b % m
    n = round(math.sqrt(m)) + 1
    giants = {}
    for p in range(1, n + 1):
        giants[montgomery.Montgomery.power(a, p * n, m)] = p
    for q in range(0, n + 1):
        baby = b * montgomery.Montgomery.power(a, q, m) % m
        if baby in giants:
            return giants[baby] * n - q
    raise RuntimeError('无解')


if __name__ == '__main__':
    a, x, m = 9, 99, 7
    b = montgomery.Montgomery.power(a, x, m)
    x2 = resolve(a, b, m)
    print(x2, montgomery.Montgomery.power(a, x2, m), b)

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值