分享一个从图片中提取色卡的实现

概述

最近在做“在线地图样式配置”的功能的时候,发现百度地图有个功能时上传一张图片,从图片中提取颜色并进行配图。本文就简单实现一下如何从图片中提取色卡。

效果

image.png

image.png

实现

实现思路

通过canvasdrawImage绘制图片,并通过getImageData获取颜色,根据颜色的距离对颜色进行分组,分组后的结果进行求平均。

实现代码

<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Document</title>
  </head>
  <body>
    <canvas id="canvas"></canvas>

    <script>
      const canvas = document.querySelector("#canvas");
      const { offsetWidth, offsetHeight } = document.body;
      canvas.width = offsetWidth * 0.8;
      canvas.height = offsetHeight * 0.8;
      const ctx = canvas.getContext("2d");
      
      /**
       * 计算颜色距离,判断是否为相近颜色
       * @param {Array} color1
       * @param {Array} color2
       */
      function colorDistance([r1, g1, b1], [r2, g2, b2]) {
        const rmean = (r1 + r2) / 2;
        const r = r1 - r2;
        const g = g1 - g2;
        const b = b1 - b2;
        return Math.sqrt(
          (2 + rmean / 256) * (r * r) +
            4 * (g * g) +
            (2 + (255 - rmean) / 256) * (b * b)
        );
      }

      const img = new Image();
      img.src = "./earth.jpg";
      let maxSize = 400
      img.onload = () => {
        let { width, height } = img;
        // 进行等比缩放
        if(width > height && width > maxSize) {
          const ratio = maxSize / width
          width = maxSize
          height = ratio * height
        }
        if(height > width && height > maxSize) {
          const ratio = maxSize / height
          height = maxSize
          width = ratio * width
        }
        // 绘制图片
        ctx.drawImage(img, 0, 0, width, height);
        
        const data = ctx.getImageData(0, 0, width, height).data;
        
        const dict = {};
        
        // 获取分组颜色
        const getKey = (color2) => {
          const colors = Object.keys(dict).map((c) => c.split(",").map(Number));
          if (colors.length === 0) return color2.join(",");
          const delt = 88; // 分组范围
          let res = color2.join(",");
          for (let i = 0; i < colors.length; i++) {
            const color = colors[i];
            const dis = colorDistance(color, color2);
            if (dis < delt) {
              res = color.join(",");
              break;
            }
          }
          return res;
        };
        
        // 将颜色进行分组
        for (let i = 0; i < data.length; i += 4) {
          const r = data[i];
          const g = data[i + 1];
          const b = data[i + 2];
          const ckey = getKey([r, g, b]);
          if (!dict[ckey]) dict[ckey] = [];
          dict[ckey].push([r, g, b]);
        }
        
        // 将颜色按照数量进行排序
        const result = Object.keys(dict)
          .map((c) => {
            return {
              key: c,
              colors: dict[c],
            };
          })
          .sort((a, b) => b.colors.length - a.colors.length);
        
        // 取相近色的颜色平均值   
        for (let i = 0; i < result.length; i++) {
          const { colors } = result[i];
          let r = 0,
            g = 0,
            b = 0;
          for (let j = 0; j < colors.length; j++) {
            const [r1, g1, b1] = colors[j];
            r += r1;
            g += g1;
            b += b1;
          }
          r = Math.round(r / colors.length);
          g = Math.round(g / colors.length);
          b = Math.round(b / colors.length);
          result[i]["key"] = [r, g, b].join(",");
        }
        // 根据颜色亮度进行排序
        const colorss = result.map(({ key }) => key).sort((a, b) => {
          const [ra, ga, ba] = a.split(",").map(Number)
          const [rb, gb, bb] = b.split(",").map(Number)
          const la = ra * 0.299 + ga * 0.587 + ba *0.114
          const lb = rb * 0.299 + gb * 0.587 + bb *0.114
          return lb - la
        });
        // 渲染颜色
        const h = 20;
        for (let i = 0; i < colorss.length; i++) {
          ctx.fillStyle = `rgb(${colorss[i]})`;
          ctx.strokeStyle = `#fff`;
          const y = i * h + (height + 20);
          ctx.fillRect(0, y, 30, h);
          ctx.strokeRect(0, y, 30, h);
        }
      };
    </script>
  </body>
</html>
<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛老师讲GIS

感谢老板支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值