续接上篇
通过聚类算法分析股票,选股的策略代码如下(一)!
(3032, 2)
import numpy as np from sklearn.cluster import KMeans from sklearn.manifold import TSNE import matplotlib.pyplot as plt from sklearn.metrics import pairwise_distances_argmin_min
# 假设您的数据存储在名为DATA的NumPy数组中,其形状为(3032, 225) # 请替换为您的实际数据 # 提取降维后的坐标 x = embedded_data[:, 0] y = embedded_data[:, 1] # 初始化K均值模型 num_clusters = 10 kmeans = KMeans(n_clusters=num_clusters, random_state=42) # 用K均值对降维后的数据进行聚类 labels = kmeans.fit_predict(embedded_data) # 提取簇中心坐标 cluster_centers = kmeans.cluster_centers_ print(cluster_centers) center_sample_indices, _ = pairwise_distances_argmin_min(cluster_centers, embedded_data) # 输出每个簇中心样本的ID for i, index in enumerate(center_sample_indices): print(f&