通过聚类算法分析股票,选股的策略代码如下(二)!

本文展示了如何通过K-Means聚类算法对股票数据进行降维并可视化,同时结合t-SNE进行高维数据可视化,最后通过股票代码获取行业信息。
摘要由CSDN通过智能技术生成

续接上篇

通过聚类算法分析股票,选股的策略代码如下(一)!

(3032, 2)

import numpy as np
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn.metrics import pairwise_distances_argmin_min
# 假设您的数据存储在名为DATA的NumPy数组中,其形状为(3032, 225)
# 请替换为您的实际数据


# 提取降维后的坐标
x = embedded_data[:, 0]
y = embedded_data[:, 1]

# 初始化K均值模型
num_clusters = 10
kmeans = KMeans(n_clusters=num_clusters, random_state=42)

# 用K均值对降维后的数据进行聚类
labels = kmeans.fit_predict(embedded_data)
# 提取簇中心坐标
cluster_centers = kmeans.cluster_centers_
print(cluster_centers)

center_sample_indices, _ = pairwise_distances_argmin_min(cluster_centers, embedded_data)


# 输出每个簇中心样本的ID
for i, index in enumerate(center_sample_indices):
    print(f"Cluster {i + 1} center sample ID: {index}")

# 绘制散点图,并按簇着色
plt.scatter(x, y, c=labels, cmap='viridis', alpha=0.5)
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], marker='X', s=200, color='red', label='Centroids')

# 标记每个簇的中心样本ID
ID = []
for i, index in enumerate(center_sample_indices):
    plt.text(cluster_centers[i, 0], cluster_centers[i, 1], str(index), fontsize=8, ha='center', va='center', color='black')
    ID.append(index)
    
plt.title('K-Means Clustering with t-SNE Visualization')
plt.legend()
plt.show()
# 获取一只股票的名称
def get_stock_name(code):
    return get_security_info(code).display_name

# 获取一只股票的行业
def get_stock_industry(code):
    return get_industry(code, date=None)['jq_l2']['industry_name']



LIST = []
industry = []
name =[]
for i in ID:
    LIST.append(stockList[i])
    industry.append(get_industry(stockList[i], date=_end_date)[stockList[i]]['jq_l2']['industry_name'])
    name.append(get_security_info(stockList[i]).display_name)
 
     
q = query(valuation.code, valuation.circulating_market_cap, indicator.eps).filter(
    valuation.code.in_(LIST)).order_by(valuation.circulating_market_cap.asc())
df = get_fundamentals(q)

df['name']=name
df['industry']=industry
print(df)

          code  circulating_market_cap     eps  name   industry
0  603813.XSHG                 15.1462 -0.0705  协和电子      印制电路板
1  002823.XSHE                 20.8682  0.1277  元祖股份       休闲食品
2  605258.XSHG                 24.2088  0.0729   黑牡丹      房地产开发
3  605177.XSHG                 31.4445  0.2725  凯中精密  电动机与工控自动化
4  603886.XSHG                 43.0080  1.0569  宁波银行      区域性银行
5  603686.XSHG                 43.1451  0.1316  原尚股份       物流综合
6  603322.XSHG                 58.4770  0.0505   福龙马       市政环卫
7  600510.XSHG                 58.6703  0.2593  超讯通信     通信技术服务
8  603077.XSHG                208.4175  0.0456  东亚药业        原料药
9  002142.XSHE               1332.1523  0.9695  和邦生物         农药
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值