通过聚类算法分析股票,选股的策略代码如下(二)!

本文展示了如何通过K-Means聚类算法对股票数据进行降维并可视化,同时结合t-SNE进行高维数据可视化,最后通过股票代码获取行业信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

续接上篇

通过聚类算法分析股票,选股的策略代码如下(一)!

(3032, 2)

import numpy as np
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn.metrics import pairwise_distances_argmin_min
# 假设您的数据存储在名为DATA的NumPy数组中,其形状为(3032, 225)
# 请替换为您的实际数据


# 提取降维后的坐标
x = embedded_data[:, 0]
y = embedded_data[:, 1]

# 初始化K均值模型
num_clusters = 10
kmeans = KMeans(n_clusters=num_clusters, random_state=42)

# 用K均值对降维后的数据进行聚类
labels = kmeans.fit_predict(embedded_data)
# 提取簇中心坐标
cluster_centers = kmeans.cluster_centers_
print(cluster_centers)

center_sample_indices, _ = pairwise_distances_argmin_min(cluster_centers, embedded_data)


# 输出每个簇中心样本的ID
for i, index in enumerate(center_sample_indices):
    print(f&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值