ptrade从零开始学习量化交易第10期【ptrade策略引擎简介之tick_data(可选)】

策略引擎简介

更加详细的调用方法,后续会慢慢整理。

也可找寻博主历史文章,搜索关键词使用方案,比如本文涉及函数tick_data!

感谢关注,咨询开通量化回测与获取实盘权限,欢迎和博主联系!

ptrade业务流程框架

ptrade量化引擎以事件触发为基础,通过初始化事件(initialize)、盘前事件(before_trading_start)、盘中事件(handle_data)、盘后事件(after_trading_end)来完成每个交易日的策略任务。

initialize和handle_data是一个允许运行策略的最基础结构,也就是必选项,before_trading_start和after_trading_end是可以按需运行的。

handle_data仅满足日线和分钟级别的盘中处理,tick级别的盘中处理则需要通过tick_data或者run_interval来实现。

ptrade还支持委托主推事件(on_order_response)、交易主推事件(on_trade_response),可以通过委托和成交的信息来处理策略逻辑,是tick级的一个补充。

除了以上的一些事件以外,ptrade也支持通过定时任务来运行策略逻辑,可以通过run_daily接口实现。

tick_data(可选)

tick_data(context, data)

使用场景

该函数仅交易模块可用

接口说明

该函数可以用于处理tick级别策略的交易逻辑,每隔3秒执行一次,如无tick处理需求,该函数可以在策略中不做定义。

注意事项:

  1. 该函数执行时间为9:30 -- 14:59。

  2. 该函数中的data和handle_data函数中的data是不一样的,请勿混肴。

  3. 参数data中包含的逐笔委托,逐笔成交数据需开通level2行情才能获取到数据,否则对应数据返回None。

  4. 参数data中的tick数据取自get_snapshot()并转换为DataFrame格式,如要更快速的获取快照强烈建议直接使用get_snapshot()获取。

  5. 当调用set_parameters()并设置tick_data_no_l2="1"时,参数data中将不包含逐笔委托、逐笔成交字段,当券商有l2行情时配置该参数可提升data取速;

  6. 当策略执行时间超过3s时,将会丢弃中间堵塞的tick_data。

  7. 在收盘后,将会清空队列中未执行的tick_data。

  8. 参数data中包含的逐笔委托,逐笔成交数据正常返回DataFrame格式,异常时返回None。

可调用接口

### 关于 ptrade 量化交易平台的学习资源 对于希望深入了解 `ptrade` 平台并从零开始学习的用户来说,获取系统的教程是非常重要的。特别针对第二教程的需求,在现有的资料基础上[^1],可以推测该系列课程会逐步深入讲解基础概念到实际应用。 #### 初步了解 ptrade 的特点与优势 通常情况下,入门级的教学视频或文档会在初阶段详细介绍平台的核心功能以及如何设置账户和环境配置。这有助于新手快速熟悉操作界面及其基本工作流程。 #### Focused Content on Ptrade Tutorial Phase Two 考虑到请求中的具体版本号——即“第2”,这类后续章节往往聚焦于巩固前所学知识的同时引入更复杂的内容。例如: - **数据处理能力提升**:教导使用者怎样高效导入、清洗金融时间序列数据,并利用内置工具进行初步分析。 - **策略开发框架解析**:展示基于历史行情回测简单交易逻辑的方法论;可能还会涉及到一些经典模型如均值回复或是趋势跟踪等案例研究。 - **风险管理机制初探**:传授有关止损止盈设定原则的知识点,帮助投资者建立科学合理的仓位管理体系。 ```python import pandas as pd from datetime import datetime # 假设这是读取本地CSV文件的例子 df = pd.read_csv('historical_data.csv', parse_dates=['date']) print(df.head()) ``` 上述代码片段展示了如何使用 Python 和 Pandas 库加载 CSV 文件格式的历史市场数据,这对于准备用于测试新想法的数据集非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值