ptrade从零开始学习量化交易第157期【ptrade量化策略研究参考--数据处理】

数据处理

更加详细的ptrade量化知识,后续会慢慢整理。

也可找寻博主历史文章,搜索关键词使用方案,比如本文涉及数据处理!

1、数据获取

我们首先要获得相应的数据基础的数据类型有四种:公司基本面数据、量价数据、宏观数据和特色数据,例如,上市公司的财务报表和十大股东高管年龄属于公司的基本面数据;股票的成交价、成交量、港口信息等等属于量价数据;国民生产总值、国债、利率属于宏观数据;像新闻舆情、电商销售额等等都属于特色数据

Img

2、数据清洗

这些数据都是构建因子的基石,在早期的量化投资机构中,由于数据质量的问题,这部分工作会占到他们甚至超过40%的时间。举例来说,对于数据中缺失值的补充就非常重要。
以部分负债计算为例,有息负债等于短期借款 + 一年内到期的长期负债 + 长期借款 + 应付债券 + 长期应付款。如果直接在上图所示的样本内加总,因为缺失值会导致最终的样本股从16个变为六个,数据缺失严重。非常有限的数据点,对因子的评估的能力就会大大折扣。

### 关于 ptrade 量化交易平台的学习资源 对于希望深入了解 `ptrade` 平台并从零开始学习的用户来说,获取系统的教程是非常重要的。特别针对第二教程的需求,在现有的资料基础上[^1],可以推测该系列课程会逐步深入讲解基础概念到实际应用。 #### 初步了解 ptrade 的特点与优势 通常情况下,入门级的教学视频或文档会在初阶段详细介绍平台的核心功能以及如何设置账户和环境配置。这有助于新手快速熟悉操作界面及其基本工作流程。 #### Focused Content on Ptrade Tutorial Phase Two 考虑到请求中的具体版本号——即“第2”,这类后续章节往往聚焦于巩固前所学知识的同时引入更复杂的内容。例如: - **数据处理能力提升**:教导使用者怎样高效导入、清洗金融时间序列数据,并利用内置工具进行初步分析。 - **策略开发框架解析**:展示基于历史行情回测简单交易逻辑的方法论;可能还会涉及到一些经典模型如均值回复或是趋势跟踪等案例研究- **风险管理机制初探**:传授有关止损止盈设定原则的知识点,帮助投资者建立科学合理的仓位管理体系。 ```python import pandas as pd from datetime import datetime # 假设这是读取本地CSV文件的例子 df = pd.read_csv('historical_data.csv', parse_dates=['date']) print(df.head()) ``` 上述代码片段展示了如何使用 Python 和 Pandas 库加载 CSV 文件格式的历史市场数据,这对于准备用于测试新想法的数据集非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值