红黑树其实也简单

红黑树的概念

红黑树:是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的

红黑树的性质

1. 根节点必须是黑色的。
2. 每个节点不是黑色就是红色。
3. 没有连续的红色节点。(如果一个节点是红色的,则它的两个孩子结点是黑色的)
4. 每条路径上的黑色节点的数目是相同的。
5. 所以的空结点都是黑色的。(所以空树也是红黑树)

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

当所有节点为黑色时,他是一个满二叉树!!它的所有路径都是最短路径。
在这里插入图片描述
他的最长路径一定会有红色节点:
在这里插入图片描述

红黑树节点的定义

// 节点的颜色
enum Colour
{
	RED,
	BLACK
};
// 红黑树节点的定义
template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left; // 节点的左孩子
	RBTreeNode<K,V>* _right;  // 节点的右孩子
	RBTreeNode<K, V>* _parent; // 节点的双亲(便于实现)
	pair<K, V> _kv;    //节点的值域
	enum Colour _col;  //节点的颜色

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED) //默认给红色
	{}
};

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?

答: 节点要是给黑色,插入之后会破环性质4,每条路径上的黑色节点的数目不相等了,我们很难维护这条性质,要是给红色,破坏性质3,这条性质容易维护,我们可以通过一些办法,使这棵树再一次成为红黑树。

红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:了解二叉搜索树看这里:二叉搜索树

  1. 寻找应该插入的位置
  2. 保持红黑树的性质

具体代码如下:

pair<Node*, bool> Insert(const pair<K, V>& kv)
	{
	// 第一步:寻找要插入的位置
		if (_root == nullptr) // 要是是空树,将要插入的节点变为根,并将颜色置为黑色
		{
			_root = new Node(kv);
			_root->_col = BLACK; //根节点为黑色
			return make_pair(_root, true);
		}
		// 树不为空,按照二叉搜索树的查找规则,找到适合它的位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)// 要插入的值比当前位置的大,往右走
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first>kv.first)// 要插入的值比当前位置的小,往左走
			{
				parent = cur;
				cur = cur->_left;
			}
			else // 相等表示插入失败
			{
				return make_pair(cur, false);
			}
		}
		// 走到这儿表示对应位置已找到
		// 准备插入
		cur = new Node(kv);//要插入节点默认是红色

		if (parent->_kv.first<kv.first) // 大就插在右边
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else                      // 小就插在左边
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
// 第二步: 维持红黑树的性质  (下面具体讲解,看图理解代码)
		Node* newNode = cur;
		// 两个连续节点为红色
		while (parent&&parent->_col == RED)
		{
			//一定会有grandfather节点,因为根节点必须是黑色
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				// 情况一:uncle存在且为红
				if (uncle&&uncle->_col == RED)
				{
					// 将parent和uncle都变成黑色,greadfather变成红色
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;
					// 继续往上处理
					cur = grandfather;
					parent = grandfather->_parent;
				}
				else // 情况2+3:u不存在或者存在且为黑(存在且为黑是由情况一变化而来)
				{
					//       g
					//    p
					//  c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						 //      g
						//    p
						//      c
						RotateL(parent);
						RotateR(grandfather);
						grandfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
			else //  grandfather ->_right==parent
			{
				Node* uncle = grandfather->_left;
				// 情况一:uncle存在且为红
				if (uncle&&uncle->_col == RED)
				{
					uncle->_col = BLACK;
					parent->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;

				}
				else //uncle不存在或存在且为黑
				{
					// g
					//   p
					//     c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//   g
						//     p
						//  c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(newNode, true);
	}

维护红黑树的性质:

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色没有违反红黑树任何性质,则不需要调整
在这里插入图片描述
但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

  • 情况一:cur为红,p为红,g为黑,u存在且为红
    在这里插入图片描述
  • 情况二: cur为红,p为红,g为黑,u不存在/u为黑
  • 此时维护红黑树的性质就需要对其进行旋转了,旋转完成后,将某些节点的颜色变换即可
  • 具体了解旋转请参考上文 AVL树 ------旋转介绍很详细。
  1. 单旋情况(这里只展示右单旋,左单旋参考右单旋)
    在这里插入图片描述
  2. 双旋情况 :(这里只展示左右双旋)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

此时拿着图在和上面的代码对应着看,是不是特别清楚呢!!

红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
	//中序遍历
	void _Inorder(Node*root)
		{
			if (root == nullptr)
				return;
			_Inorder(root->_left);
			cout << root->_kv.first << " ";
			_Inorder(root->_right);
		}
	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}
	// 检查是否满足红黑树的性质
	bool IsBalance()
	{
		if (_root&&_root->_col == RED)
		{
			cout << "违反规则一:根节点是红色的"<<endl;
			return false;
		}
		// 统计出左路的黑色节点的个数,用于对比
		int trueNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++trueNum;
			}
			cur = cur->_left;
		}
		int blackNum = 0;
		return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum, trueNum);

	}
		//是否有连续的红色节点
		bool _CheckRedCol(Node*root)
		{
			if (root == nullptr)
				return true;
			//这里判断节点与他的父节点
			if (root->_col == RED)
			{
				Node* parent = root->_parent;
				if (parent&&parent->_col == RED)
				{
					cout << "违反规则2:存在连续的红色节点"<<endl;
					return false;
				}
			}
			return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);
		}
		// 检查各路的黑色节点个数
		bool _CheckBlackNum(Node*root, int blackNum, int trueNum)
		{
			if (root == nullptr)
				return trueNum == blackNum;

			if (root->_col == BLACK)
				blackNum++;

			return  _CheckBlackNum(root->_left, blackNum, trueNum) && \
				_CheckBlackNum(root->_right, blackNum, trueNum);
		}
//###############################
void testRBTree()
{
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14, 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	RBTree<int, int> t;
	for (auto&e : a)
	{
		t.Insert(make_pair(e, e));
	}
	t.Inorder();
	cout << t.IsBalance() << endl;
}

结果展示:
在这里插入图片描述

红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log2N ),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多

红黑树的应用

  1. C++ STL库 – map/set、mutil_map/mutil_set
  2. Java 库
  3. linux内核
  4. 其他一些库
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值