红黑树的概念
红黑树:是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
红黑树的性质
1. 根节点必须是黑色的。
2. 每个节点不是黑色就是红色。
3. 没有连续的红色节点。(如果一个节点是红色的,则它的两个孩子结点是黑色的)
4. 每条路径上的黑色节点的数目是相同的。
5. 所以的空结点都是黑色的。(所以空树也是红黑树)
思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
当所有节点为黑色时,他是一个满二叉树!!它的所有路径都是最短路径。
他的最长路径一定会有红色节点:
红黑树节点的定义
// 节点的颜色
enum Colour
{
RED,
BLACK
};
// 红黑树节点的定义
template<class K,class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left; // 节点的左孩子
RBTreeNode<K,V>* _right; // 节点的右孩子
RBTreeNode<K, V>* _parent; // 节点的双亲(便于实现)
pair<K, V> _kv; //节点的值域
enum Colour _col; //节点的颜色
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED) //默认给红色
{}
};
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
答: 节点要是给黑色,插入之后会破环性质4,每条路径上的黑色节点的数目不相等了,我们很难维护这条性质,要是给红色,破坏性质3,这条性质容易维护,我们可以通过一些办法,使这棵树再一次成为红黑树。
红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:了解二叉搜索树看这里:二叉搜索树
- 寻找应该插入的位置。
- 保持红黑树的性质。
具体代码如下:
pair<Node*, bool> Insert(const pair<K, V>& kv)
{
// 第一步:寻找要插入的位置
if (_root == nullptr) // 要是是空树,将要插入的节点变为根,并将颜色置为黑色
{
_root = new Node(kv);
_root->_col = BLACK; //根节点为黑色
return make_pair(_root, true);
}
// 树不为空,按照二叉搜索树的查找规则,找到适合它的位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)// 要插入的值比当前位置的大,往右走
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first>kv.first)// 要插入的值比当前位置的小,往左走
{
parent = cur;
cur = cur->_left;
}
else // 相等表示插入失败
{
return make_pair(cur, false);
}
}
// 走到这儿表示对应位置已找到
// 准备插入
cur = new Node(kv);//要插入节点默认是红色
if (parent->_kv.first<kv.first) // 大就插在右边
{
parent->_right = cur;
cur->_parent = parent;
}
else // 小就插在左边
{
parent->_left = cur;
cur->_parent = parent;
}
// 第二步: 维持红黑树的性质 (下面具体讲解,看图理解代码)
Node* newNode = cur;
// 两个连续节点为红色
while (parent&&parent->_col == RED)
{
//一定会有grandfather节点,因为根节点必须是黑色
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
// 情况一:uncle存在且为红
if (uncle&&uncle->_col == RED)
{
// 将parent和uncle都变成黑色,greadfather变成红色
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = grandfather->_parent;
}
else // 情况2+3:u不存在或者存在且为黑(存在且为黑是由情况一变化而来)
{
// g
// p
// c
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
grandfather->_col = RED;
cur->_col = BLACK;
}
break;
}
}
else // grandfather ->_right==parent
{
Node* uncle = grandfather->_left;
// 情况一:uncle存在且为红
if (uncle&&uncle->_col == RED)
{
uncle->_col = BLACK;
parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else //uncle不存在或存在且为黑
{
// g
// p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(newNode, true);
}
维护红黑树的性质:
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;
但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
- 情况一:cur为红,p为红,g为黑,u存在且为红
- 情况二: cur为红,p为红,g为黑,u不存在/u为黑
- 此时维护红黑树的性质就需要对其进行旋转了,旋转完成后,将某些节点的颜色变换即可
- 具体了解旋转请参考上文 AVL树 ------旋转介绍很详细。
- 单旋情况(这里只展示右单旋,左单旋参考右单旋)
- 双旋情况 :(这里只展示左右双旋)
此时拿着图在和上面的代码对应着看,是不是特别清楚呢!!
红黑树的验证
红黑树的检测分为两步:
- 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
- 检测其是否满足红黑树的性质
//中序遍历
void _Inorder(Node*root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << " ";
_Inorder(root->_right);
}
void Inorder()
{
_Inorder(_root);
cout << endl;
}
// 检查是否满足红黑树的性质
bool IsBalance()
{
if (_root&&_root->_col == RED)
{
cout << "违反规则一:根节点是红色的"<<endl;
return false;
}
// 统计出左路的黑色节点的个数,用于对比
int trueNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++trueNum;
}
cur = cur->_left;
}
int blackNum = 0;
return _CheckRedCol(_root) && _CheckBlackNum(_root, blackNum, trueNum);
}
//是否有连续的红色节点
bool _CheckRedCol(Node*root)
{
if (root == nullptr)
return true;
//这里判断节点与他的父节点
if (root->_col == RED)
{
Node* parent = root->_parent;
if (parent&&parent->_col == RED)
{
cout << "违反规则2:存在连续的红色节点"<<endl;
return false;
}
}
return _CheckRedCol(root->_left) && _CheckRedCol(root->_right);
}
// 检查各路的黑色节点个数
bool _CheckBlackNum(Node*root, int blackNum, int trueNum)
{
if (root == nullptr)
return trueNum == blackNum;
if (root->_col == BLACK)
blackNum++;
return _CheckBlackNum(root->_left, blackNum, trueNum) && \
_CheckBlackNum(root->_right, blackNum, trueNum);
}
//###############################
void testRBTree()
{
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14, 16, 3, 7, 11, 9, 26, 18, 14, 15 };
RBTree<int, int> t;
for (auto&e : a)
{
t.Insert(make_pair(e, e));
}
t.Inorder();
cout << t.IsBalance() << endl;
}
结果展示:
红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log2N ),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
红黑树的应用
- C++ STL库 – map/set、mutil_map/mutil_set
- Java 库
- linux内核
- 其他一些库