Codeforces Round #201 (Div. 2) 347C Alice and Bob(脑洞)

C. Alice and Bob
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. The rules are as follows. First, they get a set of n distinct integers. And then they take turns to make the following moves. During each move, either Alice or Bob (the player whose turn is the current) can choose two distinct integers x and y from the set, such that the set doesn't contain their absolute difference|x - y|. Then this player adds integer |x - y| to the set (so, the size of the set increases by one).

If the current player has no valid move, he (or she) loses the game. The question is who will finally win the game if both players play optimally. Remember that Alice always moves first.

Input

The first line contains an integer n (2 ≤ n ≤ 100) — the initial number of elements in the set. The second line contains n distinct space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the set.

Output

Print a single line with the winner's name. If Alice wins print "Alice", otherwise print "Bob" (without quotes).

Sample test(s)
input
2
2 3
output
Alice
input
2
5 3
output
Alice
input
3
5 6 7
output
Bob
Note

Consider the first test sample. Alice moves first, and the only move she can do is to choose 2 and 3, then to add 1 to the set. Next Bob moves, there is no valid move anymore, so the winner is Alice.


Alice or Bob每次选两个不同的数字,如果自己的集合不包含|x - y|,就将其加入自己的集合。Alice先进行,谁无法进行谁输。


用gcd判断即可。


AC代码:


#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int maxn = 105;
typedef long long ll;
ll gcd(ll a, ll b)
{
	return b ? gcd(b, a % b) : a;
}
int main(int argc, char const *argv[])
{
	int n;
	ll temp = 0;
	while(scanf("%d", &n) != EOF) {
		ll a[maxn];
		for(int i = 0; i < n; ++i) {
			scanf("%lld", &a[i]);
			temp = max(temp, a[i]);
		}
		int ans = temp;
		for(int i = 0; i < n - 1; ++i)
			for(int j = i + 1; j < n; ++j) {
				int k = gcd(a[i], a[j]);
				temp = gcd(temp, k);
			}
		int m = ans / temp - n;
		puts(m & 1 ? "Alice" : "Bob");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值