Codeforces Round #337 (Div. 2) 610D Vika and Segments(线段树)

D. Vika and Segments
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vika has an infinite sheet of squared paper. Initially all squares are white. She introduced a two-dimensional coordinate system on this sheet and drew n black horizontal and vertical segments parallel to the coordinate axes. All segments have width equal to 1 square, that means every segment occupy some set of neighbouring squares situated in one row or one column.

Your task is to calculate the number of painted cells. If a cell was painted more than once, it should be calculated exactly once.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of segments drawn by Vika.

Each of the next n lines contains four integers x1y1x2 and y2 ( - 109 ≤ x1, y1, x2, y2 ≤ 109) — the coordinates of the endpoints of the segments drawn by Vika. It is guaranteed that all the segments are parallel to coordinate axes. Segments may touch, overlap and even completely coincide.

Output

Print the number of cells painted by Vika. If a cell was painted more than once, it should be calculated exactly once in the answer.

Sample test(s)
input
3
0 1 2 1
1 4 1 2
0 3 2 3
output
8
input
4
-2 -1 2 -1
2 1 -2 1
-1 -2 -1 2
1 2 1 -2
output
16
Note

In the first sample Vika will paint squares (0, 1)(1, 1)(2, 1)(1, 2)(1, 3)(1, 4)(0, 3) and (2, 3).



题目链接:点击打开链接

给出n条线段, 问这些线段与坐标轴围成的图形面积是多少.

线段树扫描线模板题, 理解线段树扫描线:点击打开链接

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int MAXN = 6e6 + 5;
struct node
{
	int l, r, lson, rson, sum;
	/* data */
}t[MAXN];
int n, i;
ll ans;
vector<pair<int, pair<int, int> > > hor, ver, magic;
int Build(int l, int r)
{
	static int x = 0;
	int v = ++x;
	t[v].l = l;
	t[v].r = r;
	t[v].sum = 0;
	return v;
}
void Update(int v, int x, int d)
{
	t[v].sum += d;
	if(t[v].l == t[v].r) return;
	int c = t[v].l + (t[v].r - t[v].l) / 2;
	if(x <= c) {
		if(t[v].lson == 0) t[v].lson = Build(t[v].l, c);
		Update(t[v].lson, x, d);
	}
	else {
		if(t[v].rson == 0) t[v].rson = Build(c + 1, t[v].r);
		Update(t[v].rson, x, d);
	}
}
int Query(int v, int l, int r)
{
	if(l <= t[v].l && t[v].r <= r) return t[v].sum;
	int res = 0;
	if(t[v].lson > 0 && t[t[v].lson].r >= l) res += Query(t[v].lson, l, r);
	if(t[v].rson > 0 && t[t[v].rson].l <= r) res += Query(t[v].rson, l, r);
	return res;
}
void Merge(vector<pair<int, pair<int, int> > > &v)
{
	if(v.size() == 0) return;
	sort(v.begin(), v.end());
	int k = 1;
	for(int i = 1; i < v.size(); ++i) {
		if(v[i].first != v[k - 1].first || v[i].second.first > v[k - 1].second.second) {
			v[k++] = v[i];
			continue;
		}
		v[k - 1].second.second = max(v[i].second.second, v[k - 1].second.second);
	}
	v.resize(k);
}
int main(int argc, char const *argv[])
{
	scanf("%d", &n);
	for(int i = 0; i < n; ++i) {
		int x1, y1, x2, y2;
		scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
		if(x1 == x2) hor.push_back(make_pair(x1, make_pair(min(y1, y2), max(y1, y2))));
		else ver.push_back(make_pair(y1, make_pair(min(x1, x2), max(x1, x2))));
	}
	Merge(hor), Merge(ver);
	for(auto it : hor) {
		magic.push_back(make_pair(it.second.first, make_pair(it.first, +1)));
		magic.push_back(make_pair(it.second.second + 1, make_pair(it.first, -1)));
		ans += it.second.second - it.second.first + 1;
	}
	sort(magic.begin(), magic.end());
	Build(-1e9, 1e9);
	for(auto it : ver) {
		while(i < magic.size() && magic[i].first <= it.first) {
			Update(1, magic[i].second.first, magic[i].second.second);
			i++;
		}
		ans += it.second.second - it.second.first + 1 - Query(1, it.second.first, it.second.second);
	}
	printf("%lld\n", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值