可持久化字典树

可持久化字典树

首先什么是可持久化数据结构呢?

在这里插入图片描述

我理解的可持久化字典树

每添加一个字符串,就意味着产生了一个新版本的字典树,这个新版本的字典树必须要满足可以O(1)复制整个数据结构,还必须满足O(1)的退回某个历史版本

怎么去实现可持久化字典树的功能呢?

首先O(1)的退回历史版本很好解决,我们只需要记录每个版本字典树的根节点即可,即将第i个版本记录为root[i];

那如何去O(1)的复制整个数据结构呢?

  • 在回答这个问题之前,我们先思考一下,什么时候需要复制数据结构,所谓的复制整个数据结构真的是整个数据构吗?

    • 如果我们更新版本的方式是,先复制上一个版本的数据结构,再在此基础上进行修改的化,我们所付出的空间和时间代价都非常的大.
    • 但其实我们只需要每次存储修改的部分,然后将没有被修改的数据结构O(1)的复制过来即可
    • 所谓的复制整个数据结构实际上是说,将没有被修改的部分的整个数据结构复制过来
  • 回到问题上,其实我们可以观察到,字典树在实现上是拥有很多节点以及指针的,

    • 比如说nxt [ p ] [ 0 ] 表示从当前节点p通过代表0的边所指向的下一个节点 ,
    • 说到底nxt这玩意就是一个指针,
    • 既然我们我们有指针,那为何不通过复制指针间接地将数据结构复制过来

在这里插入图片描述

代码模板

以[最大异或和](P4735 最大异或和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn))为例

顺便贴一个相关[题解](AcWing 256. 最大异或和–逐行注释代码 - AcWing)

#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<climits>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<bitset>
#include<cmath>
#define x first 
#define y second 
using namespace std;

typedef pair<int,int> PII;
typedef long long LL;

const int N = 6e5 + 10,M = N * 25;
int s[N],n,m;
struct Trie 
{
    int nxt[M][2],max_id[M];
    int root[N],cnt;

    // 递归插入字符串
    void insert(int i,int k,int p,int q) //p为上一个版本的节点,q为当前版本的节点
    {
        if(k < 0)
        {
            max_id[q] = i;
            return;
        }
        int c = (s[i] >> k) & 1;
        if(p) nxt[q][!c] = nxt[p][!c]; //通过复制指针来间接复制上一个版本未修改部分
        nxt[q][c] = ++cnt; //修改部分,开辟新空间;
        insert(i,k - 1,nxt[p][c],nxt[q][c]);
        max_id[q] = max(max_id[nxt[q][0]],max_id[nxt[q][1]]);
    }

    int query(int l,int r,int x)
    {
        int p = root[r];
        for(int i = 23; ~i; i--)
        {
            int c = (x >> i) & 1;
            if(max_id[nxt[p][!c]] >= l) p = nxt[p][!c];
            else p = nxt[p][c];
        }
        return x ^ s[max_id[p]];
    }

    Trie()
    {
        max_id[0] = -1;
        root[0]++;
        insert(0,23,0,root[0]);
    }
}trie;

int main()
{
    scanf("%d%d",&n,&m);
    trie.insert(0,23,0,trie.root[0]);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d",&s[i]);
        s[i] ^= s[i - 1];
        trie.root[i] = ++trie.cnt;
        trie.insert(i,23,trie.root[i - 1],trie.root[i]);
    }

    char op[2];
    int l,r,x;
    while(m--)
    {
        scanf("%s",op);
        if(*op == 'A')
        {
            scanf("%d",&x);
            ++n;
            s[n] = s[n - 1] ^ x;
            trie.root[n] = ++trie.cnt;
            trie.insert(n,23,trie.root[n - 1],trie.root[n]);
        }
        else 
        {
            scanf("%d%d%d",&l,&r,&x);
            printf("%d\n",trie.query(l - 1,r - 1,s[n] ^ x));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值