可持久化字典树
首先什么是可持久化数据结构呢?
我理解的可持久化字典树
每添加一个字符串,就意味着产生了一个新版本的字典树,这个新版本的字典树必须要满足可以O(1)复制整个数据结构,还必须满足O(1)的退回某个历史版本
怎么去实现可持久化字典树的功能呢?
首先O(1)的退回历史版本很好解决,我们只需要记录每个版本字典树的根节点即可,即将第i个版本记录为root[i];
那如何去O(1)的复制整个数据结构呢?
-
在回答这个问题之前,我们先思考一下,什么时候需要复制数据结构,所谓的复制整个数据结构真的是整个数据构吗?
- 如果我们更新版本的方式是,先复制上一个版本的数据结构,再在此基础上进行修改的化,我们所付出的空间和时间代价都非常的大.
- 但其实我们只需要每次存储修改的部分,然后将没有被修改的数据结构O(1)的复制过来即可
- 所谓的复制整个数据结构实际上是说,将没有被修改的部分的整个数据结构复制过来
-
回到问题上,其实我们可以观察到,字典树在实现上是拥有很多节点以及指针的,
- 比如说nxt [ p ] [ 0 ] 表示从当前节点p通过代表0的边所指向的下一个节点 ,
- 说到底nxt这玩意就是一个指针,
- 既然我们我们有指针,那为何不通过复制指针间接地将数据结构复制过来呢
代码模板
以[最大异或和](P4735 最大异或和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn))为例
顺便贴一个相关[题解](AcWing 256. 最大异或和–逐行注释代码 - AcWing)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<climits>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<bitset>
#include<cmath>
#define x first
#define y second
using namespace std;
typedef pair<int,int> PII;
typedef long long LL;
const int N = 6e5 + 10,M = N * 25;
int s[N],n,m;
struct Trie
{
int nxt[M][2],max_id[M];
int root[N],cnt;
// 递归插入字符串
void insert(int i,int k,int p,int q) //p为上一个版本的节点,q为当前版本的节点
{
if(k < 0)
{
max_id[q] = i;
return;
}
int c = (s[i] >> k) & 1;
if(p) nxt[q][!c] = nxt[p][!c]; //通过复制指针来间接复制上一个版本未修改部分
nxt[q][c] = ++cnt; //修改部分,开辟新空间;
insert(i,k - 1,nxt[p][c],nxt[q][c]);
max_id[q] = max(max_id[nxt[q][0]],max_id[nxt[q][1]]);
}
int query(int l,int r,int x)
{
int p = root[r];
for(int i = 23; ~i; i--)
{
int c = (x >> i) & 1;
if(max_id[nxt[p][!c]] >= l) p = nxt[p][!c];
else p = nxt[p][c];
}
return x ^ s[max_id[p]];
}
Trie()
{
max_id[0] = -1;
root[0]++;
insert(0,23,0,root[0]);
}
}trie;
int main()
{
scanf("%d%d",&n,&m);
trie.insert(0,23,0,trie.root[0]);
for(int i = 1; i <= n; i++)
{
scanf("%d",&s[i]);
s[i] ^= s[i - 1];
trie.root[i] = ++trie.cnt;
trie.insert(i,23,trie.root[i - 1],trie.root[i]);
}
char op[2];
int l,r,x;
while(m--)
{
scanf("%s",op);
if(*op == 'A')
{
scanf("%d",&x);
++n;
s[n] = s[n - 1] ^ x;
trie.root[n] = ++trie.cnt;
trie.insert(n,23,trie.root[n - 1],trie.root[n]);
}
else
{
scanf("%d%d%d",&l,&r,&x);
printf("%d\n",trie.query(l - 1,r - 1,s[n] ^ x));
}
}
return 0;
}