扩展欧几里得算法求特解以及通解

在这里插入图片描述

扩展欧几里得算法

裴蜀定理

百度百科上的解释
裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1.

然后呢?我们的扩展欧几里得算法就是为形如 ax + by = c (gcd(a,b) | c)的式子求特解的算法

extend_gcd(int a,int b,int &x,int &y)

首先先介绍一下,extend_gcd 求的是 ax + by = gcd(a,b)的特解

有欧几里得定理可知 :
            gcd(a,b) = gcd(b,a % b)
根据裴蜀定理,有:
            ax + by = gcd(a,b);
            bx1 + (a % b)y1 = gcd(b,a % b) = gcd(a,b);
而 bx1 + (a % b)y1 = gcd(b,a % b) = gcd(a,b)可整理为:
            y1 * a + (x1 - a / b * y1) * b = gcd(a,b);
所以有:
    x = y1, y = x1 - a / b * y1

因此我们可以通过先求关于gcd(b,a % b)的 x1 和 y1, 然后倒推出 x 和 y;
  • 然后我们可以用递归函数实现这一过程;
  • 递归的结束条件为b = 0,此时gcd(a,b) = a;
  • 意味着 ax + by = a, 即 x = 1, y = 0;

如果要求 ax + by = c 的特解,那么需要保证 gcd(a,b) | c 然后 x *= c / gcd(a,b)就ok啦!

求 ax + by = c的通解

由于通解 = 特解 + 齐次

而我们可以用扩展欧几里得求得特解,剩下得就是求齐次解了
齐次方程为
    ax + by = 0;
求得的解为 
    x = k * (b / gcd(a , b));
    y = - k * (a / gcd(a , b));
所以 ax + by = c 的通解为 
    x = x0(特解) + k *(b / gcd(a,b));
    y = y0(特解) - k *(a / gcd(a,b));

其次方程的求解如图所示

在这里插入图片描述

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值