每日OJ题_牛客_DP13[NOIP2002 普及组]过河卒_路径dp_C++_Java

目录

牛客_DP13[NOIP2002 普及组]过河卒_路径dp

题目解析

C++代码1

C++代码2

Java代码


牛客_DP13[NOIP2002 普及组]过河卒_路径dp

[NOIP2002 普及组] 过河卒_牛客题霸_牛客网 (nowcoder.com)

描述:

    棋盘上 A点有一个过河卒,需要走到目标 B点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0, 0)、B点(n,m),同样马的位置坐标是需要给出的。

        现在要求你计算出卒从 A点能够到达 B点的路径的条数,假设马的位置(x,y)是固定不动的,并不是卒走一步马走一步。


题目解析

简单路径 dp 问题:相当于是有障碍物的路径类问题,标记走到障碍物上的方法数为 0 即可。

C++代码1

#include <iostream>
#include <ostream>
#include <vector>
using namespace std;
#define int long long // 66666666666666666666666666666666666666666666
signed main()
{
	// 把马吃了是不是后面的点就能走了?emmm
	int n = 0, m = 0, x = 0, y = 0;
	cin >> n >> m >> x >> y;
	// if (n == 1 || m == 1) // 边界处理
	// {
	// 	cout << 1 << endl;
	// 	return 0;
	// }
	// if (abs(m - x) + abs(n - y) == 3 && m != x && n != y)
	// {
	// 	cout << 0 << endl;
	// 	return 0;
	// }
	// vector<vector<int>> borad(n, vector<int>(m));
	vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
	for (int i = 0; i <= n; ++i)
	{
		if (abs(i - x) + abs(0 - y) == 3 && i != x && 0 != y)
			break;
		if (x == i && y == 0) // 马也不能走!!!真服了
			break;
		dp[i][0] = 1;
	}
	for (int j = 0; j <= m; ++j)
	{
		if (abs(0 - x) + abs(j - y) == 3 && 0 != x && j != y)
			break;
		if (x == 0 && y == j) // 马也不能走!!!真服了
			break;
		dp[0][j] = 1;
	}
	for (int i = 1; i <= n; ++i)
	{
		for (int j = 1; j <= m; ++j)
		{
			if (abs(i - x) + abs(j - y) == 3 && i != x && j != y)
				continue;
			if (x == i && y == j) // 马也不能走!!!真服了
				continue;
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
		}
	}
	// for(int i = 0; i <= n; ++i) // DeBug:打印dp矩阵
	// {
	// for(int j = 0; j <= m; ++j)
	// {
	// cout << dp[i][j] << " ";
	// }
	// cout << endl;
	// }
	cout << dp[n][m] << endl;
	return 0;
}

C++代码2

#include <iostream>
#include <ostream>
#include <vector>
using namespace std;
#define int long long // 66666666666666666666666666666666666666666666
signed main()
{
	// 把马吃了是不是后面的点就能走了?emmm
	int n = 0, m = 0, x = 0, y = 0;
	cin >> n >> m >> x >> y;
	// if (n == 1 || m == 1) // 边界处理
	// {
	// 	cout << 1 << endl;
	// 	return 0;
	// }
	// if (abs(m - x) + abs(n - y) == 3 && m != x && n != y)
	// {
	// 	cout << 0 << endl;
	// 	return 0;
	// }
	// vector<vector<int>> borad(n, vector<int>(m));
	vector<vector<int>> dp(n + 2, vector<int>(m + 2, 0));
	// for (int i = 0; i <= n; ++i)
	// {
	// 	if (abs(i - x) + abs(0 - y) == 3 && i != x && 0 != y)
	// 		break;
	// 	if (x == i && y == 0) // 马也不能走!!!真服了
	// 		break;
	// 	dp[i][0] = 1;
	// }
	// for (int j = 0; j <= m; ++j)
	// {
	// 	if (abs(0 - x) + abs(j - y) == 3 && 0 != x && j != y)
	// 		break;
	// 	if (x == 0 && y == j) // 马也不能走!!!真服了
	// 		break;
	// 	dp[0][j] = 1;
	// }
    dp[0][1] = 1;
    x += 1, y += 1;
	for (int i = 1; i <= n + 1; ++i)
	{
		for (int j = 1; j <= m + 1; ++j)
		{
			if (abs(i - x) + abs(j - y) == 3 && i != x && j != y)
				continue;
			if (x == i && y == j) // 马也不能走!!!真服了
				continue;
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
		}
	}
	// for(int i = 0; i <= n; ++i) // DeBug:打印dp矩阵
	// {
	// for(int j = 0; j <= m; ++j)
	// {
	// cout << dp[i][j] << " ";
	// }
	// cout << endl;
	// }
	cout << dp[n + 1][m + 1] << endl;
	return 0;
}

Java代码

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main
{
    public static void main(String[] args) 
    {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), m = in.nextInt(), x = in.nextInt(), y = 
            in.nextInt();
        long[][] dp = new long[n + 2][m + 2];
        dp[0][1] = 1;
        x += 1; y += 1;
        for(int i = 1; i <= n + 1; i++)
        {
            for(int j = 1; j <= m + 1; j++)
            {
                if(i != x && j != y && Math.abs(i - x) + Math.abs(j - y) == 3
                   || (i == x && j == y))
                {
                    dp[i][j] = 0;
                }
                else
                {
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        System.out.println(dp[n + 1][m + 1]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GR鲸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值