排序算法-堆排序详细讲解(heapSort)

堆排序

每次将堆顶元素取出,与末尾元素交换,调整前n-1个元素,使其仍然成堆,重复上述过程,直到剩余元素为1时为止,即可得到非递减序列

  1. 最大堆的堆顶时整个堆中的最大元素
  2. 最小堆的堆顶时整个堆中的最小元素

代码演示

 public static void downAdjust(int [] array,int parentIndex,int length){
        //temp保存父节点值,用于最后的赋值
        int temp=array[parentIndex];
        int childIndex=2*parentIndex+1;
        while(childIndex<length){
            //如果有右孩子,且右孩子大于左孩子的值,则定位到右孩子
           if (childIndex+1<length && array[childIndex+1]>array[childIndex]){
               childIndex++;
           }
           //如果父节点大于任何一个孩子的值,则直接跳出
            if (temp>=array[childIndex]) break;
            //无须真正交换,单项赋值即可
            array[parentIndex]=array[childIndex];
            parentIndex=childIndex;
            childIndex=2*childIndex+1;
        }
        array[parentIndex]=temp;
    }

    /**
     * 堆排序(升序)
     * @param array 待调整的堆
     */
    public static void heapSort(int[] array){
        //1.把无序数组构建成最大堆
        for (int i = (array.length-2)/2; i >=0 ; i--) {
            downAdjust(array,i,array.length);
            }
        //2. 循环删除堆顶元素,移到集合尾部,调整堆产生的新的堆顶
        for (int i = array.length-1; i >0 ; i--) {
            //最后一个元素和第一个元素进行交换
            int temp=array[i];
            array[i]=array[0];
            array[0]=temp;
            //"下沉"调整最大堆
            downAdjust(array,0,i);

        }

        }

    public static void main(String[] args) {
        int arr[]={4,4,6,5,3,2,8,1,9,3,5,6,7,12,23,34,21,22,14,19};
        heapSort(arr);
        System.out.println(Arrays.toString(arr));
    }

时间复杂度:

堆排序平均性能接近于最坏性能,时间复杂度为O(nlog2 n)

空间复杂度:

仅用arr[0]作为交换辅助空间,空间复杂度为O(1)

算法特点:

1、不稳定排序

2、只能用于顺序结构,不能用于链式结构

3、初始建堆所需要的比较次数比较多,记录较少时不宜采用,堆排序在最坏情况下的时间复杂度为O(nlog2 n),相对于快速排序最坏情况下的O(n^2)而言是个优点,当记录较多时较为高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值