《高频电子线路》 —— 单级高频谐振小信号放大器的增益

文章内容来源于【中国大学MOOC 华中科技大学通信(高频)电子线路精品公开课】,此篇文章仅作为笔记分享。


目录

单级高频谐振小信号放大器

高频交流等效电路

电压增益

Vi与Vc之间的关系

Vc与Vo之间的关系

计算电压增益

代入Vo、Vc、Y'L

拆解yoe、yie2

整理式子的分母

得到电压增益的最简式

说明g∑和C∑的使用

小结


单级高频谐振小信号放大器

对于给定的电路,先画出其高频交流等效电路,然后求其增益、通频带和选择性。

  • 将电路一分为二,右上部分,是带抽头的并联谐振回路,左下部分,就是晶体管的放大电路。
  • 晶体管放大电路的静态工作点由R1、R2、R3决定。
  • C3代表发射极的旁路电容,对于电源而言,负极供电,LF和CF是滤波电路。

高频交流等效电路

  • 其中Y参数等效电路代表着晶体管,带抽头的是并联谐振回路的等效电路。
  • 其中gp是并联谐振回路的谐振电阻Rp的倒数,Rp实际上是电感的损耗电阻R,R原本是与电感串联的形式,为了计算方便,将其转化成了并联的形式,在并联的形式中是以电导的形式体现的。
  • 在原始的电路里,是没有Rp的,Rp只会出现在等效电路中,必须要小心,避免在并联谐振等效回路中遗漏Rp。
  • 有了这两个部分后,在加上信号源以及信号源的导纳和负载导纳即可(此处的负载假设的是下一级是采用晶体管的放大器,下一级晶体管的输入导纳,即为本级的负载导纳)。

电压增益

要求电压增益,需要求出输出电压和输入电压的关系。
首先需要建立输入电压Vi集电极电压Vc之间的关系,是通过外参数来建立。
其次再通过抽头之间的关系来建立集电极电压Vc输出电压Vo之间的关系。

Vi与Vc之间的关系

根据外参数的电流Ib,可以建立方程一:
根据外参数电流的Ic,可以建立方程二:
再根据集电极电流Ic流向抽头,可以得到方程三:
其中Y'L表示集电极C向右看过去的回路导纳。

集电极C向右看过去的回路导纳Y'L,包括四部分:
:并联谐振回路的电阻。
:并联谐振回路的电容。
:并联谐振回路的电感。
:负载折合过来的导纳。

再根据第三个式子和第二个式子相等联立,就可以得到Vc和Vi之间的关系:

注意:yf1代表的是晶体管的放大倍数。


Vc与Vo之间的关系

Vc电压过来是接到抽头p1,输出电压Vo是以抽头p2接入的。
所以根据抽头的电压变化比,就可以得到Vc与Vo之间的关系。


计算电压增益

代入Vo、Vc、Y'L

把输出电压Vo代入,再把Vc的电压代入,再把Y'L代入,就得到了这样一个复杂的式子。

分析一下分母的物理意义:
从左到右分别代表:信号源折合过来的导纳、并列谐振的电阻、并列谐振的电容、并列谐振的电感和负载折合过来的导纳。正好就是并联谐振回路的左边和右边。


拆解yoe、yie2

进一步的把yoe拆解成电导和电纳:
进一步的把yie2拆解成电导和电纳:
因为yoe和yie2都是放大管等效出来的,没有电感的成分,只有电容的成分。


整理式子的分母

再整理一下分母得到:

将所有的电电导整合到一起,称为g∑;
所有的电容整合到一起,称为C∑;
最后把所有电感放到一起。


电压增益的最简式

最后就可以得到电压增益较为简洁的式子:

  • 分母里包括三大块:电导(电阻成分)、容抗(电容成分)、感抗(电感成分)。
  • yf1代表着晶体管的放大倍数,对高频谐振小信号放大电路的电压增益起到决定性的作用。
  • 负号代表着输入和输出信号相位正好相反,因为正好是共射极放大电路。
说明g∑和C∑的使用

  • 以g∑为例,从刚才的推导中可以看到它包括三项,中间一项代表着并联谐振回路的电导,右边一项代表着负载折合过来的电导,左边一项代表着左边信号源折合过来的电导。但是g∑不一定永远等于这三项。
  • 假如在并联谐振回路中增加了电阻R4,那么相应的高频交流等效电流就会发生改变,随之g∑也会有相应的增减,那么针对R4的增加,需要在g∑中对应增大电导g4,是电阻R4的倒数。

小结

  • 推导过程较为复杂,但最后的形式比较简洁直观,从物理意义上还是较为方便理解和记忆的。
  • Rp比较容易被遗漏,因为电路里是看不到Rp的,只有在等效回路中才能看得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值