将一个中缀表达式转换成后缀表达式。
一、代码
package stack;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
/*
// 一、 用栈计算后缀表达式
// 先定义一个逆波兰表达式(字符串)
// (3+4)x5-6 => 3 4 + 5 x 6 -
// 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / +
// 为了方便,逆波兰表达式的数字和符号之间要用空格隔开
String suffixExpression = "4 5 * 8 - 60 + 8 2 / +";
// 思路:
// 1. 先将"3 4 + 5 x 6 - "放到 ArrayList 中
// 2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈完成计算
List<String> list = getListString(suffixExpression);
System.out.println("rpnList = " + list);
try {
int res = cal(list);
System.out.println("计算结果 = " + res);
} catch (Exception e) {
System.out.println(e.getMessage());
}
*/
//二、将一个中缀表达式转换成后缀表达式
//说明
//1. 1+((2+3)x4)-5 => 1 2 3 + 4 x + 5 -
//2. 因为直接对表达式字符串"1+((2+3)x4)-5"进行操作不方便,因此先将"1+((2+3)x4)-5"转换成中缀表达式对应的List
//3. 即中缀表达式字符串"1+((2+3)x4)-5"转换成中缀表达式ArrayList [1, +, (, (, 2, +, 3, ), *, 4, ), -, 5]
String expression = "1+((2+3)x4)-5";//中缀表达式字符串
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println("中缀表达式:"+ expression + "对应的后缀表达式为:"+infixExpressionList);
}
// 方法:将中缀表达式(字符串)转换成对应的List
public static List<String> toInfixExpressionList(String s) {
// 先定义一个List,存放中缀表达式(字符串)的内容
List<String> ls = new ArrayList<String>();
int index = 0;// 这是一个指针,用于遍历中缀表达式字符串s
String str;// 用于对多位数进行拼接,一定要注意每次拼接前都要赋值为空串""
char c;// 没遍历到一个字符,就放入到c中
do {
// 如果c是一个非数字,就需要加入到ls中
if ((c = s.charAt(index)) < 48 || (c = s.charAt(index)) > 57) {
// ASCII码大于等于48,小于等于57之间的为数字字符
ls.add("" + c);
index++;// index后移一位
} else {// 如果是一个数,需要考虑多位数
str = "";// 每次拼接前都要赋值为空串""
while (index < s.length() && (c = s.charAt(index)) >= 48 && (c = s.charAt(index)) <= 57) {
// '0'的ASCII码为48,'9'的ASCII码为57
str += c;// 拼接成多位数
index++;// index后移一位
}
ls.add(str);// 拼接完后,就将其放入ls中
}
} while (index < s.length());// while循环结束后,就已经完成了转换
return ls;
}
// 依次将一个逆波兰表达式的数字和运算符放入到ArrayList中
public static List<String> getListString(String suffixExpression) {
// 将字符串 suffixExpression 分割成单个字符串(不包括空格字符串" "),然后放入一个字符串数组
// suffixExpression.split(" ")表示以空格字符串" "作为分隔符将suffixExpression分割成单个的字符串
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for (String e : split) {
list.add(e);
}
return list;
}
// 完成对逆波兰表达式 3 4 + 5 x 6 - 的运算
// 1.从左至右扫描,将3和4压入堆栈;
// 2.遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4=7,再将7入栈;
// 3.将5入栈;
// 4.接下来是x运算符,因此弹出5和7,计算7x5=35,将25入栈; 5)将6入栈; 6)最后是-运算符,计算出35-6=29,由此得出最终结果。
public static int cal(List<String> ls) {
// 创建一个栈,只需要一个栈即可,栈中存放的是字符串
Stack<String> stack = new Stack<String>();
// 遍历传入的ls
for (String e : ls) {
// 这里使用正则表达式取出数
if (e.matches("\\d+")) {// 匹配的是多位数
stack.push(e);// 如果e是一个数,则直接入栈
} else {
// 如果e不是数,则pop出两个数,并运算,再入栈
// 注意:先弹出的数用num2接收,后弹出的数用num1接收
int num2 = Integer.parseInt(stack.pop());// 出栈的字符串,所以要转换成整型数值
int num1 = Integer.parseInt(stack.pop());
int res = 0;// 用于存放num2和num1的计算结果
if (e.equals("+")) {// 如果扫描到运算符是+
res = num1 + num2;// 注意:先弹出的数用num2接收,后弹出的数用num1接收
} else if (e.equals("-")) {
// 注意:先弹出的数用num2接收,后弹出的数用num1接收,所以res = num1 - num2
// 如果先弹出的数用num1接收,后弹出的数用num2接收,则res = num2 - num1
res = num1 - num2;
} else if (e.equals("*")) {
res = num1 * num2;
} else if (e.equals("/")) {
// 注意:先弹出的数用num2接收,后弹出的数用num1接收,所以res = num1/num2
// 如果先弹出的数用num1接收,后弹出的数用num2接收,则res = num2/num1
res = num1 / num2;
} else {// 如果运算符不是+、-、*、/中的一个,则抛出异常
throw new RuntimeException("运算符有误");
}
// 把运算结果res入栈
stack.push("" + res);// 栈stack上一个字符串栈,而res是整数,所以要将res变成"res"才能入栈
}
}
// 最后留在stack中的数据就是运算结果
// 注意:stack.pop()的结果是一个字符串,要将字符串转换成int
return Integer.parseInt(stack.pop());
}
}
二、结果
中缀表达式:1+((2+3)x4)-5对应的后缀表达式为:[1, +, (, (, 2, +, 3, ), x, 4, ), -, 5]