十一、词向量模型

1.独热编码

1.1 独热编码的概念

  • 在英文中称作One-Hot code,直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。
  • 假如有三种颜色特征:红、黄、蓝。红=1,黄=2,蓝=3;红<黄<蓝;
  • 即红色:1 0 0 ,黄色: 0 1 0,蓝色:0 0 1

1.2 独热编码表示词向量

  • John likes to watch movies. Mary likes too.
  • John also likes to watch football games.
    在这里插入图片描述

1.3 One-Hot编码的实现

# coding:utf-8
from sklearn import preprocessing  # 导入预处理模型
enc = preprocessing.OneHotEncoder()  # 调用独热编码
enc.fit( [
        [0, 0, 3],
        [1, 1, 0],
        [0, 2, 1],
        [1, 0, 2]]
)  # 训练集
res = enc.transform([[0, 1, 3]]).toarray()  # 结果转化为数组
print(res)
[[1. 0. 0. 1. 0. 0. 0. 0. 1.]]

2. 词袋模型

2.1 词袋模型的概念

  • 词袋模型(Bag of Words,简称BoW),即将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的,把每一个单词都进行统计,同时计算每个单词出现的次数。
  • 词袋模型的三部曲:分词(tokenizing),统计修订词特征值(counting)与标准化(normalizing)。

2.2 句子的向量表示

  • 文档的向量表示可以直接将各词的词向量表示加和。
    在这里插入图片描述

2.3 词袋模型的实现

# coding:utf-8

from sklearn.feature_extraction.text import CountVectorizer

texts = ["orange banana apple grape",
         "banana apple apple",
         "grape",
         'orange apple'] # 语料库

cv = CountVectorizer() # 词袋模型对象
cv_fit = cv.fit_transform(texts) # 完成文本到向量的表示
print(cv.vocabulary_) # 词汇表
# print(cv_fit)
print(cv_fit.toarray()) # 文本向量表示的数组格式

"""
运行结果:
[[0 1 1 0 1]
 [1 0 1 0 0]
 [0 0 0 0 0]
 [0 0 0 1 0]]
{'orange banana': 4, 'banana apple': 2, 'apple grape': 1, 'apple apple': 0, 'orange apple': 3}
"""

3 词频逆文本频率

3.1 TF-IDF的概念

  • TF-IDF(Term Frequency–Inverse Document Frequency),即“词频-逆文本频率”,是一种用于资讯检索与文本挖掘的常用加权技术
  • 词频(Term Frequency,TF):指的是某一个给定的词语在该文件中出现的频率.
  • 逆向文件频率(Inverse Document Frequency,IDF):是一个词语普遍重要性的度量.

3.2 TF-IDF的实现

# coding:utf-8
from sklearn.feature_extraction.text import TfidfVectorizer
texts = ["orange banana apple grape", "banana apple apple",
         "grape", 'orange apple']
cv = TfidfVectorizer() # TF-IDF
cv_fit = cv.fit_transform(texts) # 完成文本到向量的表示
print(cv.vocabulary_) # 词汇表
# print(cv_fit)
print(cv_fit.toarray()) # 文本的权重表示

运行结果:
F:\1\Users\tarena\PycharmProjects\nlp\venv\Scripts\python.exe D:/Users/tarena/PycharmProjects/nlp/unit11/tfidf.py
{'orange': 3, 'banana': 1, 'apple': 0, 'grape': 2}
[[0.42344193 0.52303503 0.52303503 0.52303503]
 [0.8508161  0.52546357 0.         0.        ]
 [0.         0.         1.         0.        ]
 [0.62922751 0.         0.         0.77722116]]
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值