1. Pytorch的安装方法
1.1 Pytorch介绍
- Pytorch是一款facebook发布的深度学习框架,由于易用性,友好性,深受广大用户青睐.
- 官网:https://pytorch.org/get-started/locally/
1.2 Pytorch常见的安装方法
-
conda命令安装
- 带GPU的安装方法:conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
- 不带GPU的安装步骤:conda install pytorch-cpu torchvision-cpu -c pytorch
-
使用Pycharm可视化安装
-
点击
File->Settings
弹出工具包安装按钮:
-
点击上图中的
加号
弹出Available package
对话框,在文本中输入torch
-
- 点击如图所示的
Install Package
和Specify version
选择指定版本进行安装
2. 张量Tensor
2.1 *张量的概念
- 张量是一个统称,其中包含很多类型.
- 0阶张量:标量、常数,0-D Tensor
- 1阶张量:向量,1-D Tensor
- 2阶张量:矩阵,2-D Tensor
- 3阶张量:3-D Tensor
2.2 张量的数据类型
- tensor中的数据类型非常多,常见类型如下:
3. Pytorch中tensor的常用方法
3.1 Pytorch中tensor的常用方法包括:
- 获取tensor中的数据(当tensor中只有一个元素是可用):
tensor.item()
- 转化为数组:
tensor.numpy()
- 获取tensor的形状:
tensor.size()
- 改变tensor的形状:
tensor.view()
- 获取tensor的阶数:
tensor.dim()
- 获取最大值:
tensor.max()
3.2 步骤
步骤一:获取tensor中的数据(当tensor中只有一个元素可用):tensor.item()
import numpy as np
a = torch.tensor(np.arange(1))
print(a.item())
print("--------------------")
步骤二:tensor转化为数组
torch.manual_seed(1)
b = torch.rand(2,3)
print(b.numpy())
print("--------------------")
步骤三: 获取tensor形状
print(a.size())
print(b.size())
print("--------------------")
步骤四:形状改变
c = b.view(3,2)
print(c)
print("--------------------")
步骤五:获取阶数
# 5. 获取阶数
d = torch.rand(4,3,4)
print(d.dim())
print("--------------------")
步骤六:获取最大值
# 6. 获取最大值
e = c.max()
f = b.max()
print(e,f)