十七、Pytorch的安装和使用

本文详细介绍了Pytorch的安装方法,包括conda命令行和Pycharm可视化安装,并提供了详细的步骤。此外,还深入讲解了张量的概念,如标量、向量和矩阵,并列举了张量常用的数据类型。接着,文章演示了Pytorch中张量的一些基本操作,如获取数据、转换为数组、获取形状、改变形状、获取阶数以及找到最大值。这些内容对于理解和使用Pytorch进行深度学习至关重要。
摘要由CSDN通过智能技术生成

1. Pytorch的安装方法

1.1 Pytorch介绍

  • Pytorch是一款facebook发布的深度学习框架,由于易用性,友好性,深受广大用户青睐.
  • 官网:https://pytorch.org/get-started/locally/

在这里插入图片描述

1.2 Pytorch常见的安装方法

  • conda命令安装

    • 带GPU的安装方法:conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
    • 不带GPU的安装步骤:conda install pytorch-cpu torchvision-cpu -c pytorch
  • 使用Pycharm可视化安装

    • 点击File->Settings弹出工具包安装按钮:
      在这里插入图片描述

    • 点击上图中的加号弹出Available package对话框,在文本中输入torch

在这里插入图片描述

  • 点击如图所示的Install PackageSpecify version选择指定版本进行安装
    在这里插入图片描述

2. 张量Tensor

2.1 *张量的概念

  • 张量是一个统称,其中包含很多类型.
  • 0阶张量:标量、常数,0-D Tensor
  • 1阶张量:向量,1-D Tensor
  • 2阶张量:矩阵,2-D Tensor
  • 3阶张量:3-D Tensor

在这里插入图片描述

2.2 张量的数据类型

  • tensor中的数据类型非常多,常见类型如下:
    在这里插入图片描述

3. Pytorch中tensor的常用方法

3.1 Pytorch中tensor的常用方法包括:

  • 获取tensor中的数据(当tensor中只有一个元素是可用):tensor.item()
  • 转化为数组:tensor.numpy()
  • 获取tensor的形状:tensor.size()
  • 改变tensor的形状:tensor.view()
  • 获取tensor的阶数:tensor.dim()
  • 获取最大值:tensor.max()

3.2 步骤

步骤一:获取tensor中的数据(当tensor中只有一个元素可用):tensor.item()

import numpy as np
a = torch.tensor(np.arange(1))
print(a.item())

print("--------------------")

步骤二:tensor转化为数组


torch.manual_seed(1)
b = torch.rand(2,3)
print(b.numpy())

print("--------------------")

步骤三: 获取tensor形状

print(a.size())
print(b.size())

print("--------------------")

步骤四:形状改变

c = b.view(3,2)
print(c)

print("--------------------")

步骤五:获取阶数

# 5. 获取阶数
d = torch.rand(4,3,4)
print(d.dim())
print("--------------------")

步骤六:获取最大值

# 6. 获取最大值
e = c.max()
f = b.max()
print(e,f)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值