- 博客(7)
- 资源 (1)
- 收藏
- 关注
【拓扑数据分析】基于持久同调与Mapper的形状识别:高维数据结构特征提取与机器学习应用
内容概要:本文系统介绍了拓扑数据分析(Topological Data Analysis, TDA)的核心方法与实际应用,重点讲解了持续同调(Persistent Homology)、Mapper算法(包括传统Mapper与Ball Mapper)的基本原理及其在多尺度、高维数据中的应用。通过构建单纯复形(如Rips、Čech和Alpha复形)、过滤过程和持久图,TDA能够捕捉数据的形状特征(如连通分量、环、空洞等),实现对数据结构的稳定、坐标无关且鲁棒的描述。文章结合多个实际案例,展示了TDA在图像分析、时间序列、材料科学及社会数据(如英国脱欧)中的应用,并提供了基于Python/R的实践练习,帮助读者掌握从理论到工具实现的全过程。;
适合人群:具备一定数学基础(如线性代数、拓扑初步)和编程能力(Python/R)的数据科学家、研究生及科研人员,尤其适合从事机器学习、数据挖掘、生物信息或复杂系统分析的研究者;
使用场景及目标:①理解TDA如何揭示高维数据中的隐含结构与模式;②掌握持续同调与Mapper算法的数学基础与实现流程;③将TDA方法集成到统计分析与机器学习任务中,提升模型可解释性与特征表达能力;
阅读建议:建议结合文中提供的Jupyter Notebook和R代码进行动手实践,重点关注过滤复形构建、持久图生成与Mapper图可视化等关键步骤,并通过对比传统统计
2025-09-10
【拓扑数据分析】基于单纯复形与持续同调的高维数据结构建模:Mapper图与贝蒂数在生物进化及传感器网络中的应用
内容概要:本文系统介绍了拓扑数据分析(TDA)的基本概念与核心方法,重点涵盖拓扑方法的动机、单纯复形的数据表示以及持续同调理论。文章从数据几何可视化出发,阐述为何使用拓扑方法处理高维、噪声数据,并介绍Nerve、Reeb图和Mapper等工具用于构建数据的拓扑结构,尤其展示了Mapper在单细胞基因表达、RNA折叠路径和癌症演化中的实际应用。随后讲解了Cech、Vietoris-Rips和Witness等单纯复形的构造方式及其关系,最后深入介绍持续同调与贝蒂数在不同尺度下的稳定性分析,结合H1N1病毒演化、传感器网络覆盖和自然图像斑块等实例展示其应用价值。;
适合人群:具备一定数学基础(如线性代数、拓扑初步)和数据分析背景的研究生、科研人员或数据科学家,尤其适合从事生物信息学、机器学习或复杂系统研究的专业人士。;
使用场景及目标:①理解高维数据的非线性结构与全局拓扑特征;②应用于基因表达分析、病毒进化建模、图像统计等复杂数据场景;③掌握Mapper图与持续同调条形码的实际构建与解释方法;
阅读建议:建议结合图示与实例逐步理解抽象概念,重视从数据到拓扑结构的映射过程,可配合相关工具(如JavaPlex)进行实践操作以加深对持续同调计算流程的理解。
2025-09-10
流体力学基于气动弹性颤振机制的圆柱壳横流中卵形振荡研究:机理分析与新实验结果
内容概要:本文综述了圆柱壳在横向流中发生椭化振荡(ovalling oscillations)的研究进展,并提出了新的实验与理论成果。文章首先回顾了早期认为椭化振荡由涡旋脱落次谐波激发的假说,随后系统分析了该假说存在的矛盾:如频率整数比关系仅在起振时成立、即使抑制涡旋仍可发生椭化等。基于这些矛盾,作者提出椭化振荡实为一种气动弹性颤振现象,其机制是壳体通过负气动阻尼从流体中自激获取能量。文中介绍了改进的理论模型,考虑了尾流区反向流动和基底压力随变形的变化,显著提升了预测精度,并通过能量传递分析和阻尼测量进一步验证了颤振机制的正确性。;
适合人群:从事流固耦合、气动弹性或结构振动研究的科研人员,以及具有流体力学和固体力学背景的研究生和工程技术人员。;
使用场景及目标:①理解圆柱壳在横向流中的失稳机制,区分涡旋诱发与自激颤振的区别;②掌握气动弹性颤振的理论建模方法,包括非定常气动力计算与稳定性判据;③为烟囱、管道、飞行器壳体等薄壁结构的抗风设计提供理论依据。;
阅读建议:建议结合文中的实验数据(如PSD分析、阻尼变化、能量输入计算)与理论模型(如势流假设、边界条件设置)对照阅读,重点关注模型改进前后预测精度的变化,以及尾流效应在稳定性分析中的关键作用。
2025-09-10
岩土工程中美注册岩土工程师专业考试对比分析:考试制度、内容与模式优化研究
内容概要:本文对比分析了中美两国注册岩土工程师专业考试的制度与实施情况,重点从考试机构、考试时间、题型设置、考试内容及评分方式等方面进行比较。美国由NCEES组织考试,实行每年两次、一天8小时的开卷考试,题型为80道多选题,侧重广度与深度结合,强调基础理论的重复考查;中国考试每年一次、分两天共12小时,题量大、题型复杂,包含专业知识与专业案例两部分,采用计算机读卡与专家人工复评相结合的方式,专业性更强。文章指出我国考试模式较为保守,建议借鉴美国经验,优化考试时长、整合考试科目、调整题型比例,提升命题质量与考试效率。;
适合人群:从事岩土工程领域的技术人员、准备参加注册岩土工程师考试的考生、工程教育研究者及考试制度设计相关人员。;
使用场景及目标:①了解中美注册岩土工程师考试制度差异,明确各自特点与优劣;②为我国注册考试制度改革提供参考依据;③帮助考生针对性备考,提升应试策略。;
阅读建议:此资源适合结合我国现行考试大纲与美国NCEES考试规范对照阅读,重点关注考试内容覆盖范围、题型设计理念及评分机制,以便深入理解注册考试的专业要求与发展方向。
2025-09-10
风能工程基于Betz理论的风机叶片气动设计与载荷分析:水平轴风力机叶片形状优化及结构强度评估
内容概要:本文全面综述了现代风力涡轮机叶片设计的现状,重点分析了水平轴风力涡轮机(HAWT)的气动设计原理与结构载荷。文章详细阐述了理论最大效率(Betz极限)、推进方式(阻力与升力)、实际效率影响因素,并深入探讨了HAWT叶片的关键设计参数,包括叶尖速比、叶片平面形状与数量、翼型选择、扭转角、攻角优化及智能叶片技术。同时,系统分析了作用在叶片上的五类主要载荷:气动、重力、离心、陀螺和运行载荷,并介绍了结构力学建模方法,如基于梁模型的挥舞与摆振弯曲分析以及疲劳载荷评估。;
适合人群:具备一定工程背景的科研人员、能源与机械专业学生及从事风能技术研发的工程师;
使用场景及目标:①理解风力机叶片气动设计核心原理及其效率限制;②掌握叶片结构受力分析方法,用于叶片优化设计与安全性评估;③为风能系统教学、科研项目或工业设计提供理论支持与技术参考;
阅读建议:建议结合文中图表与公式深入理解气动与结构设计逻辑,重点关注Betz理论、BEM方法及载荷分类,适用于开展风力机叶片仿真建模或创新设计前的知识储备。
2025-09-10
【计算拓扑学】基于拓扑数据分析的复杂系统特征提取:从理论到应用的系统性研究框架构建
内容概要:本书《基于计算拓扑学的数据分析》系统介绍了计算拓扑学在数据分析中的理论基础与应用方法,涵盖拓扑空间、度量空间、单纯复形、同调群、持久同调、离散Morse理论、Reeb图、Mapper算法等核心概念,并深入探讨了拓扑数据分析(TDA)在点云数据处理、图像分析、神经科学、道路网络重建等领域的实际应用。书中结合数学理论与算法实现,强调从数据中提取拓扑特征以揭示其内在结构。;
适合人群:具备一定数学基础(如线性代数、拓扑初步)和编程能力,从事数据科学、计算机科学、应用数学或相关领域研究的研究生、博士生及科研人员;尤其适合希望将拓扑方法应用于实际问题的研究者。;
使用场景及目标:①理解持久同调、Morse理论、Reeb图等拓扑工具的数学原理与计算方法;②掌握如何利用TDA提取高维复杂数据的形状特征并进行可视化与分析;③应用于生物网络、遥感图像、神经成像等实际场景中的结构识别与模式发现。;
阅读建议:建议结合具体编程实践(如使用GUDHI、Dionysus等TDA工具包)同步学习,注重理论推导与算法实现的结合,同时参考书中引用的前沿研究成果以拓展应用视野。
2025-09-10
数据科学基于拓扑数据分析的高维数据处理:Persistent Homology与Mapper在生物信息与癌症检测中的应用
内容概要:本文介绍了拓扑数据分析(Topological Data Analysis, TDA)的基本理论及其应用,重点讲解了持续同调(Persistent Homology)、UMAP降维方法和Mapper算法。通过构建单纯复形、利用神经定理恢复数据拓扑结构,并结合多尺度分析研究数据几何特征。文档还展示了如何在Python中使用Scikit-TDA、Ripser、Kepler Mapper和UMAP等工具进行代码实现,并提供了单细胞RNA测序、癌症检测和NBA球员分类等实际应用案例。;
适合人群:具备一定数学基础和Python编程经验,对数据科学、拓扑学或高维数据可视化感兴趣的科研人员与数据分析师;适合研究生、数据科学家及工作1-3年的技术人员;
使用场景及目标:①理解TDA如何从点云数据中提取拓扑特征;②掌握持续同调、UMAP和Mapper的原理与实现;③应用于生物信息学、复杂系统分析和高维数据降维可视化;
阅读建议:建议结合GitHub上的代码示例(https://github.com/ximenafernandez/PyData2019TDA)动手实践,配合理论学习,深入理解各算法的参数设置与输出解释。
2025-09-10
【风力发电技术】基于实测数据的塔筒涡激振动特性分析:整机状态下锁定现象与疲劳损伤评估研究
内容概要:本文基于某兆瓦级风电机组的实测数据,分析了整机状态下塔筒涡激振动的基本特性,重点研究了在叶片顺桨、气动阻尼最小工况下,塔筒在临界风速范围内的“锁定”现象及其引发的共振行为。通过机舱振动加速度、风速分解及时频分析,验证了涡激振动的发生机制,并对临界风速、机舱最大位移和疲劳损伤的实测值与BS EN 1991-1-4、DIN 4133等设计标准的理论计算值进行了对比,发现现有标准普遍高估临界风速、低估位移和疲劳损伤,难以准确反映实际影响。研究指出,随着机组大型化趋势,涡激振动问题将更突出,需结合实测数据修正设计方法或采用扰流条、阻尼器等措施提升安全性。;
适合人群:从事风电机组结构设计、振动分析与安全评估的工程师及科研人员,具备一定空气动力学和结构动力学基础的技术人员;;
使用场景及目标:①理解风电机组在停机顺桨状态下塔筒涡激振动的触发条件与“锁定”特性;②评估现行设计标准在涡激振动计算中的局限性;③为高塔、大风轮机组的疲劳损伤精准建模和振动抑制措施提供依据;
阅读建议:建议结合文中实测时历曲线与频谱图深入分析振动特征,关注标准计算公式与实测数据之间的偏差来源,并在工程设计中考虑引入实测校正或主动抑制方案以提高结构可靠性。
2025-09-10
Toeplitz and Circulant Matrices A Review-循环矩阵.pdf
Toeplitz and Circulant Matrices A Review-循环矩阵
2025-09-10
06 Fatigue loading history reconstruction based on the rainflow technique.pdf
06 Fatigue loading history reconstruction based on the rainflow technique
2025-09-10
17-Stochastic Reconstruction of Loading Histories from a Rainflow Matrix——从疲劳荷载普重建时序.PDF
17-Stochastic Reconstruction of Loading Histories from a Rainflow Matrix——从疲劳荷载普重建时序.PDF
2025-09-10
线性代数-线性代数矩阵理论:涵盖矩阵运算、可逆性、秩、初等变换及分块矩阵,提供系统化知识框架与应用方法
内容概要:本文系统介绍了线性代数中矩阵的核心概念与运算,涵盖矩阵的定义、基本运算(加法、数乘、乘法)、方阵的幂与行列式、可逆矩阵及其求法、矩阵的秩与初等变换、分块矩阵及其运算等内容。重点阐述了矩阵乘法的非交换性、可逆矩阵的判定与求解方法(包括伴随矩阵法、初等变换法等)、矩阵秩的计算及其性质,并通过分块矩阵和初等变换深化对矩阵结构的理解。
适合人群:具备高等数学基础的理工科本科生、研究生及从事相关领域研究的专业人员。
使用场景及目标:①掌握矩阵的基本运算规则与性质,理解矩阵乘法的特殊性;②熟练运用多种方法求解可逆矩阵与矩阵的秩;③通过初等变换与分块矩阵技巧解决线性方程组与矩阵分解问题。
阅读建议:建议结合具体例题与习题进行练习,注重对矩阵运算规律的归纳与证明过程的理解,尤其应加强对初等变换与分块矩阵的应用训练,以提升综合解题能力。
2025-09-10
复分析复域常微分方程解法研究:全纯系数高阶方程与正则奇点系统解空间结构分析
内容概要:本文系统地研究了复域中的常微分方程,重点探讨了解的存在性与唯一性、基本矩阵、正则奇点系统、福克斯定理(Fuchs' theorem)、形式解以及弗罗贝尼乌斯方法(Frobenius method)。文章首先将高阶微分方程转化为一阶线性系统,利用解析函数理论和幂级数展开证明了解在单连通区域内的存在与唯一性,并引入基本矩阵及其行列式满足的微分方程。随后讨论了在 punctured disk 上具有正则奇点的系统,通过单值化定理和单值群(monodromy)分析其解的结构,建立了等价类与共轭类之间的双射关系。进一步,文章给出判断正则奇点的准则,并通过福克斯定理将解的适度增长性与系数的极点阶数联系起来。最后,介绍了形式对数级数环中的形式解理论,并应用弗罗贝尼乌斯方法求解二阶方程,以贝塞尔方程为例展示了通解的构造过程,包括涉及对数项的第二解。;
适合人群:具备复分析、线性代数和常微分方程基础知识的数学专业研究生或高年级本科生。;
使用场景及目标:①理解复系数常微分方程解的存在性、唯一性及空间结构;②掌握正则奇点系统的分类、单值性分析与解的增长性判断;③学习弗罗贝尼乌斯方法求解二阶方程,特别是贝塞尔方程的解法及其单值群性质;④为研究微分Galois理论、特殊函数或几何微分方程打下基础。;
阅读建议:此讲义理论性强,建议结合复分析与线性代数知识逐步推导关键定理,重点关注基本矩阵、单值群、适度增长性与形式解之间的联系,并动手实践弗罗贝尼乌斯方法的具体计算步骤,以深入理解复域微分方程的结构性质。
2025-09-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人