- 博客(32)
- 收藏
- 关注
原创 数据在AI图像修复任务中的核心作用
在人工智能(AI)领域,数据的重要性不言而喻。尤其在图像修复任务中,数据的精度和质量直接影响着AI模型的性能。图像修复是指利用AI技术自动识别图像中的缺陷或遮挡物,并对其进行修复或还原的过程。这项技术广泛应用于各种领域,如历史文物数字化修复、影视剧制作、人脸美颜等。人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!
2024-01-14 22:23:00
1066
原创 数据在AI任务中的决定性作用:以图像分类为例
随着人工智能(AI)技术的快速发展,数据在AI任务中的重要性日益凸显。以图像分类为例,数据的质量和数量直接影响着AI模型的性能和准确性。本文将深入探讨数据在AI任务中的决定性作用,并以图像分类为例进行详细说明。
2024-01-14 22:12:45
1128
原创 训练AI模型:寻找最优参数a和b
训练AI模型:寻找最优参数a和b在训练AI模型时,我们通常需要找到最优的参数a和b,以最小化预测结果与真实标签之间的差异。这个过程涉及到多个步骤,包括数据收集、模型选择、参数优化、评估和测试等。
2024-01-14 22:06:39
730
原创 核心推荐技术:协同过滤与基于内容的过滤
协同过滤和基于内容的过滤是推荐系统的两大核心技术。协同过滤依赖于用户之间的行为相似性,能够提供个性化的推荐服务;而基于内容的过滤则是通过分析物品的内容属性来进行推荐,可扩展性较好。未来,随着技术的发展和数据的不断积累,这两种技术也将会得到更广泛的应用和改进。协同过滤作为推荐系统的核心技术之一,其基本思想是利用用户的行为数据,通过比较相似用户的行为偏好,来预测目标用户的可能喜好。这种方法的核心在于“协同”,即多个用户之间的行为模式相似性。基于内容的过滤则是通过分析物品的内容属性,为用户提供推荐。
2024-01-13 21:17:32
711
原创 基于内容的过滤
基于内容的过滤是一种推荐算法,它通过分析物品的属性和特征来给用户提供推荐。这种算法的核心思想是利用物品的内容信息,根据来给用户推荐他们可能感兴趣的物品。
2024-01-13 21:13:03
422
原创 推荐算法协同过滤
首先,系统会找出与目标用户行为相似的其他用户,然后根据这些用户喜欢的电影来给目标用户推荐电影。尽管如此,协同过滤仍然是一种非常有效的推荐算法,它能够利用用户的行为数据来给用户提供个性化的推荐。未来,随着技术的发展和数据的不断积累,协同过滤将会得到更广泛的应用和改进。虽然存在可扩展性问题和不适用于新物品的推荐等缺点,但协同过滤仍然是一种非常有效的推荐算法,未来还有很大的改进空间。协同过滤是一种推荐算法,通过分析用户的行为和其他用户的行为进行比较,找出相似的用户,并根据这些相似用户的行为给目标用户提供推荐。
2024-01-13 21:07:51
413
原创 信息检索与过滤:为用户提供全面而精准的信息服务
随着人工智能技术的不断发展,信息检索和信息过滤系统将会越来越智能、越来越精准。未来,我们期待看到更多的创新技术和应用场景涌现出来,为用户提供更加全面、更加精准的信息服务。同时,我们也需要认识到信息过载问题依然存在,如何更好地管理我们的信息需求和供给,仍是我们需要思考和解决的问题。
2024-01-12 16:50:50
1263
原创 信息过滤系统:引领我们走出信息过载困境的智能助手
在数字化时代,我们每天都被海量的信息所包围。无论是浏览网页、阅读新闻、还是购物,我们都需要处理大量的信息。然而,面对如此繁杂的信息,我们的大脑往往无法有效地处理和吸收。这时,信息过滤系统应运而生,成为我们管理信息过载问题的得力助手。
2024-01-12 16:47:39
954
原创 推荐系统:解决信息过载的智能助手
推荐系统的优势在于能够根据用户的个性化需求和兴趣,为其提供精准的信息和服务,有效解决信息过载问题。此外,如何保证推荐的公正性,防止出现信息茧房效应,也是推荐系统需要关注的问题。它使用半自动或自动化的计算机化方法,对大量的信息进行筛选,剔除冗余和不需要的部分,为用户呈现经过优化后的信息流。未来,随着数据来源的多元化和算法模型的改进,推荐系统的精度和效率将得到进一步提升。推荐系统通过收集用户的行为数据,分析用户的兴趣和需求,然后利用这些信息为用户提供相关联的建议或推荐。
2024-01-12 16:44:06
1260
原创 NLP中的句法分析
通过深入理解句子的语法结构和语义关系,我们可以更好地挖掘和理解文本中的信息,从而为自然语言处理的其他任务和应用提供支持。例如,基于转换的句法分析器、基于约束的句法分析器、基于依存关系的句法分析器等都是常见的工具和技术。基于神经网络的句法分析方法近年来也取得了很大的进展。与传统的基于规则和特征工程的方法相比,基于神经网络的方法具有更好的泛化能力和更高的效率。句法分析(Syntactic Analysis)是自然语言处理(NLP)中的一项核心技术,旨在识别和理解句子中的语法结构和成分。
2024-01-11 15:18:05
541
原创 词性标注(Part-of-Speech Tagging,POS Tagging)
此外,随着深度学习技术的发展,基于神经网络的词性标注方法逐渐成为研究的主流。常见的基于神经网络的词性标注方法包括循环神经网络(RNN)、长短期记忆网络(LSTM)和卷积神经网络(CNN)等。词性标注(Part-of-Speech Tagging,POS Tagging)是自然语言处理(NLP)中的一项基础任务,它旨在识别句子中每个词的语法功能或词性。需要注意的是,词性标注是一个复杂的过程,受到许多因素的影响,包括语言特性、数据质量、标注集的选择和标注器的设计等。
2024-01-11 15:15:58
784
原创 Transformer:深度学习的新篇章
Transformer,这个曾经默默无闻的深度学习模型,如今已经成为自然语言处理领域一颗耀眼的明星。从最初的机器翻译任务到如今的各个方面,Transformer凭借其强大的表示能力和高效的训练方法,正在引领深度学习的新篇章。
2023-12-28 00:04:15
804
原创 情感分析与意见挖掘:揭示文本背后的情感与观点
情感分析和意见挖掘是自然语言处理领域中的重要技术,它们旨在从文本中提取出人们的情感和意见,从而更好地理解用户的情感和需求。本文将对情感分析和意见挖掘的概念、原理、应用和发展进行介绍。
2023-12-24 00:16:25
1118
原创 文本挖掘与信息抽取:从非结构化数据中提取知识的关键技术
文本挖掘和信息抽取是自然语言处理领域中的重要技术,它们可以帮助我们从大量的文本数据中提取出有用的信息和知识。本文将对文本挖掘和信息抽取的概念、原理、应用和发展进行介绍。
2023-12-24 00:10:24
2456
原创 知识图谱与语义网:自然语言处理的基石
知识图谱和语义网是自然语言处理领域中的重要概念和技术,它们旨在构建大规模、结构化的知识库,从而帮助计算机更好地理解人类语言和进行智能处理。本文将对知识图谱和语义网的概念、原理、应用和发展进行介绍。
2023-12-24 00:03:34
505
原创 SVD的介绍
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!SVD(Singular Value Decomposition)是一种矩阵分解的方法,它可以将一个矩阵分解为三个矩阵的乘积,即A = UΣVT。其中,A是一个m×n的矩阵,U是一个m×m的酉矩阵,Σ是一个m×n的对角矩阵,V是一个n×n的酉矩阵。
2023-12-12 14:53:59
142
原创 Loss Function(损失函数),均方误差,交叉熵,对比损失
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!
2023-12-11 22:33:32
607
1
原创 注意力机制:提升深度学习模型性能的关键
通过引入注意力机制,模型能够更加准确地关注输入中的关键信息,从而提升了模型的性能。未来,随着对注意力机制的深入研究,相信它将在更多的任务中发挥重要的作用,推动深度学习的发展。注意力机制的引入使得模型能够更加准确地关注输入中的关键信息,从而提升了模型的性能。在传统的深度学习模型中,每个输入都被平等地对待,而注意力机制则通过计算每个输入的注意力权重,使得模型能够更加关注与当前任务相关的信息。传统的深度学习模型在处理长序列时容易出现信息丢失的问题,而注意力机制可以通过关注不同时间步的输入,从而解决这个问题。
2023-11-21 21:06:37
418
原创 LSTM的概念
输出门使用tanh激活函数将细胞状态的值缩放到-1到1之间,然后与sigmoid激活函数的输出相乘,得到最终的输出值。它由一个细胞状态(cell state)和三个门(gate)组成,分别是输入门(input gate)、遗忘门(forget gate)和输出门(output gate)。它通过输入门、遗忘门和输出门的控制,使得模型能够选择性地忘记和存储信息。通过遗忘门和输入门的控制,LSTM可以选择性地忘记或存储与当前任务相关的信息。每个层的输出将成为下一层的输入,从而形成一个深层的LSTM网络。
2023-11-21 21:02:15
169
原创 深入理解Gated Recurrent Units(GRUs)
Gated Recurrent Units(GRUs)作为一种改进的循环神经网络结构,通过引入更新门和重置门,有效地解决了传统RNNs的长期依赖问题。Gated Recurrent Units(GRUs)是一种改进的循环神经网络结构,它通过引入门控机制,有效地解决了传统RNNs的长期依赖问题。而GRUs通过更新门和重置门的控制,可以选择性地保留和丢弃信息,从而更好地捕捉到长期依赖。隐藏状态更新:根据更新门和重置门的输出,GRUs通过一个tanh函数来计算新的隐藏状态,用于传递信息到下一个时间步。
2023-11-21 20:59:56
936
原创 图像和语言的深度学习
过滤器的大小可以根据任务的需求进行调整,通常是一个小的正方形矩阵。例如,对于一个RGB图像(深度为3),如果过滤器的深度为3,则过滤器将在每个颜色通道上进行卷积操作,从而提取出与每个通道相关的特征。在图像处理中,过滤器可以看作是一个小的矩阵,而小块则是图像中的一部分。通过计算过滤器和小块之间的点积,可以得到一个表示它们之间相似程度的数字,用于图像处理中的特征提取和卷积操作。例如,对于一个32×32×3的图像(32宽,32高,3个颜色通道),卷积神经网络可以保留空间结构、提取几何信息和表示RGB颜色。
2023-11-20 19:47:02
119
1
原创 反向传播的知识
滤波器是一个小矩阵,它在图像上滑动,每个位置上计算滤波器和相应图像区域的逐元素乘积。然后将得到的值相加,产生一个单一的输出值,该值对应于该位置处的滤波后数值。例如,如果输入图像的尺寸为M x N,滤波器的尺寸为K x L,则输出图像的尺寸将为(M-K+1)x(N-L+1)。而卷积层则通过卷积操作来提取输入数据的空间特征,适合处理图像、语音等具有局部相关性的数据。是微积分中的一个重要概念,用于计算复合函数的导数。CNN中的卷积层通常后面跟着非线性激活函数,如ReLU,以及池化层,用于降低特征图的空间尺寸。
2023-11-20 19:42:47
115
1
原创 卷积神经网络
在图像识别任务中,CNN可以学习图像中的局部特征和全局特征,并通过卷积和池化操作捕捉到图像中的边缘、纹理等低级特征。如果特征图的数量过少,可能会导致一些有利于网络学习的特征被忽略,从而不利于网络的学习。但是,如果特征图的数量过多,可训练参数的数量和网络训练时间也会增加,这同样不利于学习网络模型的效率。每个特征图与上一层的一个特征图相对应,其作用是减少特征图的尺寸并保留重要的特征信息,通常通过取最大值或平均值的方式进行。全连接层的神经元与前一层的所有神经元相连接,以将前面提取到的特征进行组合和分类。
2023-11-20 18:50:24
137
1
原创 通用近似定理
通用近似定理(或称万能近似定理)是人工神经网络的一个重要数学理论,它指出神经网络具备近似任意函数的能力。根据这个定理,一个具有至少一个隐藏层的神经网络可以以任意精度表示(而不是学习)任何函数的近似值。这个定理对于神经网络的设计和应用有着重要的指导意义。具体而言,通用近似定理指出,对于任意一个连续函数f(x)和任意一个正数ε,存在一个具有至少一个隐藏层的神经网络g(x)使得对于所有的输入x,满足|f(x) - g(x)| < ε。换句话说,神经网络可以用来逼近任意连续函数,并且可以达到任意给定的精度
2023-11-19 20:34:47
1613
原创 无监督学习概要
通过聚类算法,我们可以将用户根据其行为、兴趣或其他特征进行分组,从而揭示不同用户群体之间的偏好差异。这可以帮助企业了解其受众,并根据不同用户群体的需求来制定个性化的营销策略或推荐系统。聚类是一种无监督学习的方法,它不依赖于事先标记的数据。聚类算法通过将数据根据其相似性进行分组,揭示数据中的簇结构,而无需事先知道每个样本的标签。这使得聚类算法在探索数据、发现模式和了解数据之间的关系方面非常有用。在无监督学习中,由于缺乏标记的数据,存在一些困难。例如,无监督学习需要从数据中自动发现模式和结构,而不是依赖于外部标
2023-11-19 20:15:20
98
原创 监督学习概要(下)
贪心决策树 贪心算法是一种在每一步选择中都采取当前状态下最优选择的算法。它的目标是通过每一步的最优选择,最终得到最好或最优的结果。举个例子,在旅行推销员问题中,如果旅行员每次都选择最近的城市作为下一站,那么这就是一种贪心算法。贪心算法的特点是它不会回溯或者重新考虑之前的选择,它只关注当前状态下的最优选择。那么贪心决策树就是根据某一个特征把数据分开,如果没有其他可做的就进行预测,如果有就重复刚才的操作。 支持向量机支持向量机(英语:s
2023-11-19 09:53:02
76
原创 监督学习概要(上)
最小均方算法,简称LMS算法,是一种最陡下降算法的改进算法。其具有计算复杂程度低、在信号为平稳信号的环境中收敛性好、其期望值无偏地收敛到维纳解和利用有限精度实现算法时的平稳性等特性,使LMS算法成为中稳定性最好、应用最广的算法。树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,而每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。监督学习是利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。逻辑回归:当目标是离散的我们就称之为逻辑回归。
2023-11-18 18:58:18
99
1
原创 Softmax,交叉熵损失函数,经验风险,正则化
过拟合是指学习时选择的模型所包含的参数过多,以至于出现这一模型对已知的数据预测的很好,但对未知数据预测得很差的现象。权重衰减(Weight Decay)作用是抑制模型的过拟合,以此来提高模型的泛化性。交叉熵损失函数(Cross Entropy Loss)是机器学习中常用的损失函数,它能够用来衡量两个分布之间的距离。拟合是一个数理科学术语,形象的说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。过拟合和欠拟合之间就是一个模型的承载力。过拟合和欠拟合都是我们不希望得到的。
2023-11-18 16:42:28
210
1
原创 不平衡问题
不平衡问题指的是在训练样本中,不同类别之间存在数量上的不平衡,即某些类别的样本数量远远少于其他类别。这种情况在模式分类问题中比较常见,例如在医学诊断中,罕见疾病的样本数量可能远远少于正常样本的数量。机器学习中的准确率分数是一种评估指标,用于衡量模型正确预测的数量与预测总数的关系。我们通过将正确预测的数量除以预测总数来计算它。准确率的取值范围在0到1之间,越接近1表示模型的预测结果越准确,越接近0表示模型的预测结果越不准确。精度是机器学习模型性能的指标之一,即模型做出的积极预测的质量。精度是指真阳
2023-11-18 09:36:50
181
1
原创 机器学习的全局观(下)
卷积神经网络(英语:convolutional neural network,缩写:CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。在深度学习中,优化器是在训练期间调整模型参数以最小化损失函数的算法。预训练的人工智能模型是一种深度学习模型,是类脑神经算法的一种表达,可根据数据发现模式或进行预测,并在大型数据集上进行训练以完成特定任务。与单向前馈神经网络相反,它是一种双向人工神经网络,这意味着它允许某些节点的输出影响相同节点的后续输入。
2023-11-17 20:36:29
97
原创 机器学习的全局观(中)
高斯混合模型(GMM)是单一高斯概率密度函数的延伸,就是用多个高斯概率密度函数(正态分布曲线)精确地量化变量分布,是将变量分布分解为若干基于高斯概率密度函数(正态分布曲线)分布的统计模型。GMM是一种常用的聚类算法,一般使用期望最大算法(Expectation Maximization,EM)进行估计。,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。
2023-11-17 14:57:46
110
原创 机器学习的全局观(上)
给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。该训练数据集包括输入和正确的输出,使模型能够随着时间的推移进行学习。估计误差:可以理解为对测试集的测试误差。在最简单的情形之下,给定数据可以是已存在的数据。
2023-11-17 14:48:07
206
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人