题目链接:https://www.luogu.org/problemnew/show/P2764
【问题分析】
有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决。
【建模方法】
构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi。对于原图中存在的每条边(i,j),在二分图中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。
最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。
【建模分析】
对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。
2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。
所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路径数=顶点数 - 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。
注意,此建模方法求最小路径覆盖仅适用于有向无环图,如果有环或是无向图,那么有可能求出的一些环覆盖,而不是路径覆盖。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000;
const int MAXM = 50000;
const int INF = 0x3f3f3f3f;
struct Edge1
{
int from,to,cap,flow;
};
struct Dinic
{
int n,m,s,t;
vector<Edge1> edges;
vector<int> G[MAXN];
bool vis[MAXN];
int d[MAXN];
int cur[MAXN];
void init(int n)
{
this -> n = n;
for(int i = 0; i <= n + 1; i++){
G[i].clear();
}
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge1){from,to,cap,0});
edges.push_back((Edge1){to,from,0,0});
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while(!Q.empty()) {
int x = Q.front();
Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge1& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x == t || a == 0) return a;
int flow = 0,f;
for(int& i = cur[x]; i < G[x].size(); i++) {
Edge1& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && (f = DFS(e.to,min(a,e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s,int t) {
this -> s = s,this -> t = t;
int flow = 0;
while(BFS()) {
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}din;
int to[500];
bool vis[500];
int main(void)
{
int n,m,u,v;
scanf("%d %d",&n,&m);
int S = 0,T = n * 2 + 1;
din.init(T + 1);
for(int i = 1; i <= n; i++) din.AddEdge(S,i,1);
for(int i = 0; i < m; i++) {
scanf("%d %d",&u,&v);
din.AddEdge(u,v + n,1);
}
for(int i = 1; i <= n; i++) din.AddEdge(i + n,T,1);
int ans = n - din.Maxflow(S,T);
memset(to,0,sizeof(to));
memset(vis,false,sizeof(vis));
for(int i = 0; i < din.edges.size(); i++) {
Edge1 e = din.edges[i];
if(e.from != S && e.to != T && e.flow == 1) {
to[e.from] = e.to - n;
}
}
for(int i = 1; i <= n; i++) {
int j = i;
if(!vis[j]) {
while(j) {
vis[j] = 1;
printf("%d ",j);
j = to[j];
}
printf("\n");
}
}
printf("%d\n",ans);
return 0;
}
/*
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
*/