背景
关于缓存异常,我们常见的有三个问题:缓存雪崩、缓存击穿、缓存穿透。这三个问题一旦发生,会导致大量请求直接落到数据库层面。如果请求的并发量很大,会影响数据库的运行,严重的会导致数据库宕机。
为了避免缓存异常带来的损失,我们需要了解每种异常的原因以及解决方案,提高系统的可靠性
缓存雪崩
原因:同一时间缓存中的数据大面积过期或者Redis 缓存实例发生故障宕机
- 解决方案:对于不同key设置不同的过期时间、搭建集群防止宕机
缓存击穿
缓存雪崩是因为大面积的缓存失效,打崩了数据库。而缓存击穿是指某个访问非常频繁的热点数据,大量并发请求集中在这一个点访问,在这个Key失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿了一个洞
- 解决方案
- 设置热点数据永不过期:不设置失效时间,有更新的话,需要更新缓存;
- 加互斥锁:单机可以使用synchronized、lock,分布式可以使用lua脚本
缓存穿透
缓存穿透指用户要访问的数据既不在缓存中也不在数据库中,导致用户每次请求该数据时都要去数据库查一遍,然后返回空。
- 接口层增加校验:用户鉴权、参数校验(请求参数是否合法、请求字段是否不存在等等);
- 缓存空值/缺省值:发生缓存穿透时,我们可以在Redis中缓存一个空值或者缺省值(例如,库存缺省值为0),这样就避免了把大量请求发送给数据库处理,保持了数据库的正常运行。这种方法会存在两个问题:
a. 如果有大量的Key穿透,缓存空对象会占用宝贵的内存空间。针对这种情况可以给空对象设置过期时间。
b. 设置过期时间之后,可能会有缓存与数据库不一致的情况。 - 布隆过滤器:快速判断数据是否存在,避免从数据库中查询数据是否存在,减轻数据库压力
- 布隆过滤器实战
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.15.0</version>
</dependency>
import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
public class RedissonBloomFilter {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
RedissonClient client = Redisson.create(config);
RBloomFilter<String> bloomFilter = client.getBloomFilter("test-bloom-filter");
// 初始化布隆过滤器,数组长度100W,误判率 1%
bloomFilter.tryInit(1000000L, 0.01);
// 添加数据
bloomFilter.add("Shawn");
// 判断是否存在
System.out.println(bloomFilter.contains("xujunson"));
System.out.println(bloomFilter.contains("Shawn"));
}
}