”最长上升子序列“题解

题目:

思路:

(动态规划+二分) O(nlogn)

  • 状态表示: f[i]表示长度为i的最长上升子序列,末尾最小的数字。(长度为i的最长上升子序列所有结

尾中,结尾最小min的)即长度为i的子序列末尾最小元素是什么。

  • 状态计算:对于每一个 w[i],如果大于 f[cnt-1](下标从0开始,cnt长度的最长上升子序列,末尾最小的数字),那就cnt+1,使得最长上升序列长度+1,当前末尾最小元素为 w[i]。 若 w[i] 小于等于 f[cnt-1],说明不会更新当前的长度,但之前末尾的最小元素要发生变化,找到第一个 大于或等于(这里不能是大于) w[i],更新以那时候末尾的最小元素。

  • f[i]一定以一个单调递增的数组,所以可以用二分法来找第一个大于或等于w[1]的数字。

时间复杂度:

  • O(nlogn) 状态数(n)*转移数(logn)

AC代码:

/*
    f[i]
    
    1. 集合: 所有以  a[i] 结尾的上升子序列的集合
            数(属性) : max
            
     2. 计算集合:
             f[i] = max(f[1], f[2], ... f[i - 1]) + 1;
    
    3. 边界(初始化) f[0] = 0, f[i] = 1;  i >= 1
    5 3 2
    、
    4. 时间复杂度 O(n^2) 
    7
    3 1 2 1 8 5 6
*/
#include <iostream>

using namespace std;

const int N = 1010;

int a[N];
int f[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i ++ ) cin >> a[i];
    
    for (int i = 1; i <= n; i ++ )
    {
        f[i] = 1;   // 算f[i] 只会用到 f[1 ~ i - 1]; 
                    // f[1] 的时候 f[0] 已经算过
                    // f[2] 的时候 f[1] 已经算过
                    // f[3] 的时候 f[1 ~ 2] 已经算过
                    // f[4] 的时候 f[1 ~ 3] 已经算过 
        for (int k = 1; k < i; k ++ )
            if (a[k] < a[i]) f[i] = max(f[i], f[k] + 1);
    }
    
    
    int res = 0;
    for (int i = 1; i <= n; i ++ ) res = max(res, f[i]);
    
    cout << res << endl;
    
    return 0;
    
}

如有错误,还需大神明确指出!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值