动态规划练习一 04:公共子序列

描述
我们称序列Z = < z 1, z 2, ..., z k >是序列X = < x 1, x 2, ..., x m >的子序列当且仅当存在  严格上升 的序列< i 1, i 2, ..., i k >,使得对j = 1, 2, ... ,k, 有x ij = z j。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。

现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
输入
输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。
输出
对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
样例输入
abcfbc         abfcab
programming    contest 
abcd           mnp
样例输出
4
2
0
来源
翻译自Southeastern Europe 2003的试题


          这道题为动态规划问题,因为要比较两串字符,我们可以用一个二维数组下标分别表示两串字符的下标,用数组数表示到这两个下标的最长公共字符串,这样问题就容易解决了。


源代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{ char a[201],b[201];
  int i,j,x,y;
  while(cin>>a>>b)
  { int f[201][201]={0},max=0;
    x=strlen(a);
    y=strlen(b);
    for(i=1;i<=x;++i)
     for(j=1;j<=y;++j)
     { if(a[i-1]==b[j-1])f[i][j]=f[i-1][j-1]+1;
       else { if(f[i-1][j]>f[i][j-1])f[i][j]=f[i-1][j];
              else f[i][j]=f[i][j-1];
            }
	 }
	for(i=1;i<=x;++i)
     for(j=1;j<=y;++j)
     { if(f[i][j]>max)max=f[i][j];
	 }
	 cout<<max<<endl;
  }
}

          需要注意的是不要让f[i-1][j-1]越界,所以for循环从1开始,字符串下标用i-1跟j-1表示,这样问题就解决了 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值