描述
我们称序列Z = < z
1, z
2, ..., z
k >是序列X = < x
1, x
2, ..., x
m >的子序列当且仅当存在
严格上升 的序列< i
1, i
2, ..., i
k >,使得对j = 1, 2, ... ,k, 有x
ij = z
j。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。
现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
输入
输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。
输出
对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
样例输入
样例输出
来源
翻译自Southeastern Europe 2003的试题
现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
abcfbc abfcab programming contest abcd mnp
4 2 0
这道题为动态规划问题,因为要比较两串字符,我们可以用一个二维数组下标分别表示两串字符的下标,用数组数表示到这两个下标的最长公共字符串,这样问题就容易解决了。
源代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{ char a[201],b[201];
int i,j,x,y;
while(cin>>a>>b)
{ int f[201][201]={0},max=0;
x=strlen(a);
y=strlen(b);
for(i=1;i<=x;++i)
for(j=1;j<=y;++j)
{ if(a[i-1]==b[j-1])f[i][j]=f[i-1][j-1]+1;
else { if(f[i-1][j]>f[i][j-1])f[i][j]=f[i-1][j];
else f[i][j]=f[i][j-1];
}
}
for(i=1;i<=x;++i)
for(j=1;j<=y;++j)
{ if(f[i][j]>max)max=f[i][j];
}
cout<<max<<endl;
}
}
需要注意的是不要让f[i-1][j-1]越界,所以for循环从1开始,字符串下标用i-1跟j-1表示,这样问题就解决了 。