第六章 设备管理

知识点

1.I/O系统的组成

2.I/O系统的软件层次

  ①中断处理过程

  ②I/O控制方式

  ③缓冲管理、设备分配、设备处理

3.磁盘调度

 

 I/O系统的主要功能:

1.隐藏物理设备细节,方便用户 用户使用抽象的I/O命令即可

2.实现设备无关性,方便用户 用户可用抽象的逻辑设备名来使用设备,同时也提高了OS的可移植性和易适应性。

3.提高处理机和设备的并行性,提高利用率:缓冲区管理

4.对I/O设备进行控制:控制方式、设备分配、设备处理

5.确保对设备正确共享:虚拟设备及设备独立性等

6.错误处理

 

I/O系统的组成

1.需要用于输入、输出和存储信息的设备;

2.需要相应的设备控制器;

3.控制器与CPU连接的高速总线;

4.有的大中型计算机系统,配置I/O通道;

 

中断处理流程

1.测定是否有未响应的中断信号

2.保护被中断进程的CPU环境

3.转入相应的设备处理程序

4.中断处理

5.恢复CPU的现场

 

直接存储器访问DMA 方式特点:

1.数据传输的基本单位是数据块;

2.所传送的数据是从设备直接送入内存的,或者直接从内存进设备;不需要CPU操作。

3.CPU干预进一步减少:仅在传送一个或多个数据块的开始和结束时,才需CPU干预,整块数据的传送是在控制器的控制下完成的。     

 

DMA控制器的组成

1.主机与DMA控制器的接口;

2.DMA控制器与块设备的接口;

3.I/O控制逻辑。

 

DMA工作过程

1.CPU先向磁盘控制器发送一条读命令。

2.该命令被送到命令寄存器CR中。

3.同时发送数据读入到内存的起始地址,该地址被送入MAR中;

4.要读数据的字数则送入数据计数器DC中;

5.将磁盘中的数据原地址直接送入DMA控制器的I/O控制逻辑上,按设备状态启动磁头到相应位置。

6.启动DMA控制器控制逻辑开始进行数据传送

  ①DMA控制器读入一个数据到数据寄存器DR中,然后传到内存MAR地址中;

  ②接着MAR+1,DC-1,判断DC是否为0,如否,继续,反之控制器发中断请求,传送完毕。

 

SPOOLing系统的组成

1.输入井和输出井

2.输入缓冲区和输出缓冲区

3.输入进程和输出进程

 

SPOOLing系统的特点

1.提高了I/O的速度。利用输入输出井模拟成脱机输入输出,缓和了CPU和I/O设备速度不匹配的矛盾。

2.将独占设备改造为共享设备。并没有为进程分配设备,而是为进程分配一存储区和建立一张I/O请求表。

3.最终,实现了虚拟设备功能。多个进程可“同时”使用一台独占设备。

 

引入缓冲区的主要原因:

1.缓和CPU与I/O设备间速度不匹配的矛盾。

2.缓冲区数据成批传入内存,也可进一步减少对CPU的中断频率

3.最终目的:提高CPU和I/O设备的并行性。

 

使用缓冲区的方式:

1.单缓冲、多缓冲

2.循环缓冲

3.缓冲池(Buffer Pool)

 

磁盘调度方法

1.FCFS

2.最短寻道时间优先SSTF

3.扫描算法SCAN(磁盘电梯调度算法)

  ①循环扫描算法CSCAN

  ②N-Step-SCAN算法

  ③FSCAN算法

 

访问磁盘过程

1.CPU给出地址,需要访问某存储单元;

2.并行进行TLB查找和cache查找;

3.TLB查找后申明没有找到;

4.停止并行查找,并通知操作系统处理;

5.操作系统检查页表,发现该页不在内存中,需要从硬盘调入。

 

虚拟设备是指:

通过虚拟技术将一台独占设备改造成若干台逻辑设备,供若干个用户进程同时使用。

 

按信息交换单位分类,可将设备分为:

块设备和字符设备

 

通道是:

一种负责I/O的处理机。

 

字节多路通道主要用作:

连接大量的低速I/O设备。

 

从资源分配的角度看,操作系统将外部设备分为:

独占型设备、共享型设备、虚拟设备。

 

根据信息交换方式的不同,可以将通道分为:

字节多路通道、数据选择通道、数据多路通道。

 

设备独占性是指:

应用程序独立于具体使用的物理设备。

 

缓冲技术中的缓冲池在:主存中。

 

进行设备分配时所需要的数据表格主要有:

设备控制表、设备控制器控制表、通道控制表和系统设备表。

 

大多数低速设备都属于:独享设备。

 

Spooling系统是由:

磁盘中的输入井和输出井、内存中的输入缓冲区和输出缓冲区以及输入进程和输出进程组成。

 

设备与内存之间的传输方式有:

程序直接控制方式、中断控制方式、通道控制方式和DMA控制方式,其中通道方式占用CPU时间最短。

 

Spooling技术是指:

在共享设备上模拟独占设备。由预输入程序将作业执行中需访问的数据预先读入到输入井中,缓输出程序则负责将输出井中的信息在输出设备上输出。

 

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值