题目描述 Description
动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形。A吃B,B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是“1 X Y”,表示X和Y是同类。
第二种说法是“2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1<=N<=50,000)和K句话(0<=K<=100,000),输出假话的总数。
输入描述 Input Description
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数D,X,Y,两数之间用一个空格隔开,其中 D 表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
输出描述 Output Description
只有一个整数,表示假话的数目。
样例输入 Sample Input
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
样例输出 Sample Output
3
题解
并查集经典题目,每次将两个“动物”节点x, y相连,同时维护并查集,如果是同类的话将需要并入的点(设为x)的深度处理得跟y在目标集合之中的深度一样。如果是吃与被吃的关系的话那就将x处理的比y深度加一。具体细节见代码
代码
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#define maxn 50010
#define maxm 100100
using namespace std;
int n, m;
int p[maxn], r[maxn];
int cnt;
int get_father(int x) {
if(p[x] == x) return x;
int pp = p[x];
p[x] = get_father(p[x]);
r[x] = (r[x] + r[pp])%3;
return p[x];
}
int main() {
cin >> n >> m;
for(int i = 1; i <= n; i++) p[i] = i;
for(int i = 1; i <= m; i++) {
int d, x, y;
scanf("%d%d%d", &d, &x, &y);
int px = get_father(x), py = get_father(y);
if(x > n|| y > n) {
cnt++;
continue;
}
if(d == 2 && x == y) {
cnt++; continue;
}
if(d == 1) {
if(px == py) {
if(r[x] == r[y]) continue;
cnt++;
continue;
}
p[px] = py;
r[px] = (r[y] - r[x] + 3) % 3;
}
if(d == 2) {
if(px == py) {
if((r[x]-r[y]+3)%3 == 1) continue;
cnt++;
continue;
}
p[px] = py;
r[px] = (r[y] - r[x] + 1 + 3) % 3;
}
}
cout << cnt << endl;
}