计算机视觉开发工具众多,它们可以帮助研究人员、工程师和学生开发和实现各种视觉应用。以下是一些广泛使用的计算机视觉开发工具:
-
OpenCV (Open Source Computer Vision Library): OpenCV是一个开源的计算机视觉和机器学习软件库,它提供了多种语言的接口,包括C++、Python、Java等。OpenCV拥有大量的视觉处理函数,适用于面部识别、物体检测、图像分割、相机标定等多种应用。
-
MATLAB Image Processing Toolbox & Computer Vision Toolbox: MATLAB是一个数值计算环境和编程语言,它的Image Processing Toolbox和Computer Vision Toolbox提供了丰富的函数和预构建的系统,用于图像和视频处理、视觉检测和测量、3D视觉、机器学习和深度学习等任务。
-
TensorFlow & Keras: TensorFlow是一个由Google开发的开源机器学习框架,它支持广泛的深度学习算法,并且可以用于构建和训练计算机视觉模型,如卷积神经网络(CNN)。Keras是一个高层次的神经网络API,它可以在TensorFlow之上构建模型,易于上手和使用。
-
PyTorch: PyTorch是一个开源的机器学习库,由Facebook的人工智能研究团队开发。它提供了动态计算图的功能,非常适合于计算机视觉和自然语言处理等领域的研究。
-
PIL (Python Imaging Library) & Pillow: PIL是一个Python图像处理库,但由于版权问题已经不再维护。Pillow是其友好的分支版本,用于图像处理的基础任务,如打开、保存、操作以及转换图像格式等。
-
Scikit-image: Scikit-image是一个开源的Python图像处理库,它提供了广泛的算法,用于图像分割、几何变换、色彩操作等领域。
-
HALCON: HALCON是由MVTec开发的一个商业视觉软件包,它提供了全面的算法和功能,用于工业检测、机器人引导和质量控制等。
-
VisionPro: VisionPro是Cognex公司的一个视觉软件平台,它提供了一套完整的工具,用于图像采集、处理、分析和结果输出。
-
LabVIEW Vision Development Module: LabVIEW是一个图形化编程平台,它的Vision Development Module专门为视觉应用提供了一套丰富的工具和功能。
-
Adobe Photoshop & Illustrator: 虽然不是专门的计算机视觉开发工具,但这些Adobe的图形编辑软件在图像处理和视觉设计方面也非常强大,常被用于图像预处理和后期处理阶段。
这些工具各有特点,适用于不同的应用场景和需求。选择合适的工具通常取决于项目要求、开发环境和个人技能。
在MATLAB中,计算机视觉的开发得到了几个专业工具箱的大力支持,这些工具箱提供了一系列的函数和工具,以便于开发者在图像处理和视觉分析领域进行研究和开发工作。下面详细介绍这些工具箱:
-
Computer Vision System Toolbo