自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

G_redsky的博客

一个想到啥分享啥的博主

  • 博客(71)
  • 资源 (6)
  • 收藏
  • 关注

原创 C++中的继承与多态

当一个基类指针或引用指向派生类对象时,通过虚函数调用可以根据对象的实际类型来执行相应的函数。:子类继承父类的公有成员和保护成员,并且这些成员在子类中仍然保持保护属性。:子类继承父类的公有成员和保护成员,但是这些成员在子类中成为私有的。在C++中,继承和多态是面向对象编程的核心概念,它们使得代码更加模块化、可重用和易于维护。当基类指针或引用调用虚函数时,会发生动态绑定,即实际调用的是对象所属类的版本。虚函数的调用是多态的基础,它使得不同子类的对象可以通过相同的接口进行操作。类的速度和加速功能。

2024-04-29 21:02:54 431

原创 C++智能指针理解与使用

智能指针的使用可以大大简化内存管理,但也应该谨慎使用,以避免不必要的性能开销。例如,在性能敏感的应用中,过度依赖智能指针可能会导致性能问题,因为它们需要维护额外的引用计数或弱引用信息。在C++中,智能指针是一种自动管理动态分配内存的工具,它们可以帮助避免内存泄漏和其他内存管理错误。在需要显式释放资源的场景中,如文件句柄或网络连接,确保使用正确的智能指针或结合原始指针的手动资源管理。它是一种独占所有权的智能指针,表示对动态分配对象的唯一所有权。用于避免循环引用,它不会增加所指向对象的引用计数。

2024-04-29 20:47:46 505

原创 C++中类与对象

类的定义通常包括访问修饰符、成员变量、成员函数和构造函数。int height;// 构造函数// 成员函数在这个例子中,Rectangle是一个类,它有两个公共成员变量width和height,以及一个构造函数和一个成员函数area。构造函数用于初始化对象的状态,成员函数则提供了对对象状态的操作。

2024-04-29 20:40:39 349

原创 简述c和c++编程开发的本质区别

C++提供了`new`和`delete`运算符来进行动态内存的分配和释放,它们可以自动处理对象的构造和析构,此外C++还引入了智能指针(如`unique_ptr`和`shared_ptr`)来进一步管理内存。- C++的标准库(如`iostream`, `string`, `vector`, `algorithm`等)非常庞大,提供了丰富的功能,支持各种数据结构和算法。C语言主要通过`malloc`, `calloc`, `realloc`, 和 `free`等函数来手动管理内存。

2024-04-26 07:33:53 701

原创 如何理解C++中的高效内存管理方式new 和delete

随后,`delete myObject`会调用`MyObject`的析构函数,然后释放分配的内存。够造和析构:使用`new`和`delete`时,编译器会生成对应的构造和析构代码,这可能会导致额外的开销。智能指针:使用C++11的智能指针(如`std::unique_ptr`和`std::shared_ptr`)可以帮助自动管理内存,特别是当你需要共享或转移对象所有权时。内存对齐:现代计算机体系结构通常对内存访问有对齐要求,`new`和`delete`确保按照合适的对齐方式分配和释放内存。

2024-04-26 07:26:52 380 1

原创 计算机视觉入门书籍推荐

虽然这本书的重点是深度学习,但它也包含了关于如何使用Keras框架进行计算机视觉任务的章节,适合希望通过深度学习方法进行计算机视觉开发的读者。这本书是计算机视觉领域的经典教材,虽然不完全是编程开发指南,但它提供了深入的算法描述和理论基础,有助于开发者理解计算机视觉背后的原理。这本书提供了计算机视觉的全面概述,包括视觉感知的生物学基础、计算机视觉的基本概念和技术,以及当前的研究热点。本书是计算机视觉领域的经典教材,全面介绍了计算机视觉的基本原理和算法,适合有一定数学和编程基础的读者。

2024-04-26 07:16:12 1047 3

原创 计算机视觉顶会有哪些

ICML(国际机器学习大会):同样,ICML也不是专门针对计算机视觉的会议,但计算机视觉领域的许多研究工作涉及到机器学习技术,因此ICML也是计算机视觉研究者关注的重要会议之一。NeurIPS(神经信息处理系统大会):虽然不是专门针对计算机视觉的会议,但由于计算机视觉与机器学习的紧密联系,NeurIPS也吸引了大量计算机视觉领域的研究者参与。:Applied Sciences是一个跨学科的开放获取期刊,覆盖应用科学的各个领域,包括计算机视觉。该期刊的审稿周期相对较短,且对于新手作者比较友好。

2024-04-23 09:21:59 1257 3

原创 【图像校正】Matlab实现文本校正

在上述代码中,首先读取图像并转换为灰度。接着,应用高斯模糊和Canny边缘检测来提取图像中的线条。通过霍夫变换找到图像中的垂直和水平线条,并计算这些线条的交点,以确定文本的四个角点。然后,创建一个新的图像用于存放校正后的文本,并计算透视变换矩阵。最后,应用透视变换,并显示校正后的文本。在MATLAB中,文本校正通常指的是对图像中的文本进行透视变换,以纠正由于拍摄角度或透视效果导致的文本扭曲。这可以通过使用MATLAB的计算机视觉工具箱中的。

2024-04-11 20:29:43 338

原创 【目标检测】根据目标边缘检测结果,生成完整轮廓-轮廓生长算法

结构体则用于存储每个对象的生长信息。在循环结束后,所有对象的生长信息被存储在。函数来获取目标的轮廓信息。函数进行腐蚀操作,以去除小的噪点。函数进行膨胀操作,以实现目标轮廓的生长。函数将生长后的目标轮廓和中心点显示出来。函数将彩色图像转换为灰度图,然后使用。变量用于记录每次迭代后的生长区域,而。在MATLAB中,可以使用。需要注意的是,上述代码中的。函数来标记连通域,并使用。在上述代码中,首先使用。

2024-04-11 20:17:11 420

原创 【小游戏】用MATLAB编写简单的小游戏

这个游戏使用了文本界面,蛇由字符 'S' 表示,苹果由字符 'A' 表示。用户可以使用键盘上的 'a', 'd', 'w', 's' 来控制蛇的方向,'q' 键用来退出游戏。当蛇撞墙或撞到自己时,游戏结束。在MATLAB中编写一个简单的小游戏,我们可以选择一个经典的游戏类型,比如贪吃蛇。我们还添加了音效和用户控制游戏速度的功能,以提高游戏的趣味性和可玩性。设计游戏的可配置性,允许用户自定义游戏的难度,如蛇的初始长度、苹果出现的频率等。添加音效,如蛇移动时的声音和吃到苹果时的声音,以增强游戏的沉浸感。

2024-03-30 12:12:51 2065 3

原创 【计算机视觉】点云图像处理技术的应用及图像配准

变换模型估计:根据匹配的特征点,估计雷达点云与图像之间的变换模型。预处理:对雷达点云数据进行预处理,包括去噪、滤波、下采样等,以减少数据量并提高后续处理的效率。特征匹配:使用特征匹配算法,如SIFT、SURF或ORB,将雷达点云的特征点与图像的特征点进行匹配。数据采集:首先,需要同时获取雷达点云数据和相应的图像数据。配准:将雷达点云数据根据估计的变换模型进行配准,使其与图像对齐。自动驾驶汽车:自动驾驶汽车通过激光雷达(LiDAR)传感器获取周围环境的三维点云数据,进行障碍物检测、道路边界识别、车辆跟踪等。

2024-03-30 11:59:37 1534

原创 一文读懂PCA主成分分析法在计算机视觉中的应用

此外,PCA并不考虑数据的标签信息,因此它可能不是最佳的特征提取方法,尤其是在需要区分不同类别的任务中。通过PCA,可以将人脸图像转换到一个低维空间,这个空间中的坐标可以作为人脸的特征向量。例如,在人脸识别中,PCA可以用来降低人脸图像的维度,同时尽可能保留人脸的关键特征。通过分析图像的颜色和纹理特征,PCA可以帮助识别图像中的不同部分,并将它们分割开。我们的目标是使用PCA来降低图像的维度,同时保留人脸的关键特征。图像压缩:通过PCA可以有效地降低图像的维度,同时保留图像的主要特征,从而实现图像的压缩。

2024-03-28 22:35:28 1545

原创 【C#】用C#创建人脸识别系统

至少需要一个PictureBox控件来显示图像,以及按钮来触发加载图像和执行面部识别。使用所选的库中的面部识别的API。以Emgu CV为例,您可以使用CascadeClassifier类来检测图像中的面部。Emgu CV是一个流行的选择,因为它是OpenCV的.NET封装。可能需要调整识别参数或尝试不同的面部识别算法。这些数据集通常包含不同人脸的图像,用于训练和测试面部识别模型。运行应用程序,加载面部图像,并测试面部识别功能。安装.NET Framework或.NET Core,这取决于您选择的库。

2024-03-28 22:23:41 884

原创 【C#】用C#编写简单的计算机视觉软件

OpenTK:这是Open Toolkit的.NET封装,提供了对OpenGL和OpenAL的访问,可以用于图像渲染和音频处理。Sfml.Net:这是Simple and Fast Multimedia Library(SFML)的.NET版本,主要用于游戏开发,但也可以用于图像处理和计算机视觉项目。Emgu CV:这是OpenCV的.NET封装,提供了许多计算机视觉功能,如图像处理、特征提取、目标识别等。Accord.NET:这是一个机器学习框架,也包括了一些计算机视觉的功能,如图像处理和模式识别。

2024-03-28 22:21:41 618

原创 【AI大模型】如何进行简单的AI大模型的训练

你可以从简单的模型开始,如多层感知器(MLP),然后逐步尝试更复杂的结构,如循环神经网络(RNN)、长短期记忆网络(LSTM)或Transformer。选择合适的框架:选择一个适合初学者的AI框架,如TensorFlow、PyTorch或Keras。学习基础知识:首先,你需要了解机器学习和深度学习的基础知识,包括神经网络、反向传播算法、损失函数等。训练和调参:使用你的数据集训练模型,并根据需要调整超参数。你可以使用GPU加速训练过程,并监控训练过程中的损失函数值和准确率。你可以计算模型的准确率、召回率、

2024-03-23 23:51:36 4750 1

原创 【图像配准】红外图像和可见光图像配准中可能会遇到的问题

红外图像和可见光图像配准过程中可能会遇到多种问题,这些问题可能会影响图像的质量和配准的准确性。解决方法:应用直方图均衡化或自适应直方图均衡化技术,改善图像的亮度和对比度,减少光照条件对图像配准的影响。解决方法:根据图像的特点和配准需求,选择合适的配准算法,如基于特征的方法、基于区域的方法或基于模板的方法。在进行红外图像和可见光图像配准时,应根据具体情况选择合适的预处理和配准方法,以提高配准的准确性和效率。解决方法:使用图像预处理技术,如特征提取和尺度变换,来调整图像的尺度,使其匹配。

2024-03-23 23:30:51 692

原创 【图像配准】图像配准中会用到的数学模型有哪些?

其中,a11、a12、a13、a21、a22 和 a23 是透视变换矩阵的元素,而 a31、a32 和 a33 则是归一化因子,用于将源图像的坐标系转换为目标图像的坐标系。在图像配准中,同台态变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中,以模拟相机的透视效果和光照变化。在图像配准中,仿射变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中。在图像配准中,透视变换模型可以用来将一幅图像(源图像)变换到另一幅图像(目标图像)的坐标系中,以模拟相机的透视效果。

2024-03-23 23:28:46 983

原创 【计算机原理】计算机原理学习入门要点

计算机原理学习入门

2024-03-23 23:14:32 861

原创 【算法应用案例】图像处理工程化应用的案例及关键代码实现

OpenCV提供了一个名为dnn(深度神经网络)的模块,它可以用来加载和运行预训练的深度学习模型,如YOLO(You Only Look Once)。请注意,这个伪代码是一个非常简化的版本,实际应用中需要考虑更多的细节,如车辆类型识别、多车道检测、实时性优化等。由于上述案例涉及到多个复杂的子系统,包括图像采集、图像处理、数据处理、控制系统和用户界面等,这里提供一个简化版的车辆检测算法的伪代码,这是整个系统中非常关键的一部分。设计一个中央控制单元,接收各路口的实时数据,并发送控制指令至相应的信号灯。

2024-03-22 10:19:20 1161

原创 【多线程优化】cuda加速图像处理算法示例

在主函数中,我们首先将图像数据从CPU内存传输到GPU内存。然后,我们调用CUDA内核来处理图像,并将处理结果从GPU内存传输回CPU内存。编写CUDA内核:接着,你需要编写一个CUDA内核,它将在GPU上执行图像处理算法。最后,我们在CPU上调用CUDA内核,并将处理结果从GPU内存传输回CPU内存。调用CUDA内核:最后,你需要在CPU上调用CUDA内核,并将处理结果从GPU内存传输回CPU内存。在这个示例中,我们首先将图像数据从CPU内存传输到GPU内存。在这个示例中,我们使用了一个CUDA内核。

2024-03-22 10:18:55 732

原创 【多线程优化】c++在图像处理过程中如何调用多线程

通过使用异步I/O操作,可以在等待I/O操作完成时进行其他计算任务,提高程序的执行效率。通过使用缓存技术,可以将频繁访问的数据存储在内存中,减少磁盘I/O操作和数据传输时间。在图像处理中,可以使用缓存来存储处理过的图像数据和中间结果,避免重复计算。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。来存储线程对象,并根据图像的宽度和系统支持的最大线程数来分配每个线程处理的区域。函数来检测图像的边缘。

2024-03-22 07:56:56 1268

原创 【自动化办公】Python里怎么用字典来批量修改文件名

这个脚本首先设置了要处理的目录路径以及一个字典,该字典包含了要替换的旧文件夹名及其对应的新文件夹名。然后,它遍历目录中的所有文件夹,使用字典来查找并替换文件夹名中的子串。在Python中,可以使用字典来批量修改文件夹名,尤其是当需要根据文件夹名中的特定模式来替换或添加信息时。以下是一个示例,它展示了如何使用字典来批量修改一个目录中所有文件夹的名称,将文件夹名中的特定子串替换为新的子串。以下是一个示例,它展示了如何使用字典来批量修改一个目录中所有JPG文件的名称,将文件名中的特定子串替换为新的子串。

2024-03-22 07:44:27 235

原创 【自动化脚本】python实现简单的抢票脚本

请记住,这个脚本只是一个非常基础的框架,实际的抢票逻辑(如搜索条件、预订流程等)需要根据目标网站的具体情况进行调整。此外,网站的结构和元素可能会随时变化,这可能需要定期更新脚本。在Python中,实现一个简单的通用抢票软件可以通过模拟用户在购票网站上的行为来完成。以下是一个基本的抢票脚本,它使用了。在使用自动化脚本时,请考虑到网络延迟、服务器负载和其他用户的竞争等因素,这些都可能影响抢票的成功率。这个脚本假设你已经知道了目标购票网站的URL、登录凭证以及购票流程。为你的ChromeDriver的实际路径,

2024-03-22 07:27:33 5873 2

原创 【超分辨率算法】如何有效提高图像分辨率?

上面的代码只是一个简单的例子,它并没有实现一个完整的超分辨率重建算法。在实际应用中,你需要添加一个合适的重建模块来从提取的特征中重建高分辨率图像,比如使用卷积神经网络进行上采样。此外,还需要对输入的低分辨率图像进行适当的处理,以符合模型的输入要求。在MATLAB中,可以使用Deep Learning Toolbox中的函数来实现这些模型,或者直接使用预训练的模型。对于更先进的超分辨率方法,如ESPCN、SRGAN等,可以使用TensorFlow Hub中的预训练模型,或者使用像。这样的开源项目来实现。

2024-03-12 22:30:18 1618

原创 【弱小目标检测】MATLAB中实现几种典型的弱小目标检测算法

这段代码使用了MATLAB中的SSD(Single Shot MultiBox Detector)模型,它是一个流行的目标检测网络,能够快速且准确地识别出图像中的多个目标。在实际应用中,你可能需要根据视频内容和目标的特性选择合适的预训练模型,并可能需要对模型进行微调以提高检测的准确性。以下是一个使用预训练的卷积神经网络(CNN)进行目标检测的示例,这里使用的是MATLAB中的Deep Learning Toolbox和Image Processing Toolbox。

2024-03-04 07:54:44 1008

原创 基于计算机视觉的铁路检测方法及代码

在MATLAB中实现铁路检测,可以遵循以下步骤:读取图像:使用imread函数加载铁路图像。灰度化:使用rgb2gray函数将彩色图像转换为灰度图像。边缘检测:使用edge函数或Canny边缘检测器找到图像中的边缘。霍夫变换:使用houghlines或函数检测图像中的直线。直线筛选:根据需要对检测到的直线进行筛选,比如长度、角度等。结果展示:在原图上绘制检测到的直线,使用line函数。在这个代码中,houghlines函数用于检测图像中的直线,并返回一个矩阵,其中包含直线的起点和终点坐标。

2024-02-28 22:29:32 665

原创 【边缘检测】几种图像边缘检测算子

为了全面评估边缘检测算法的性能,通常需要在包含各种边缘特征(如不同方向、不同强度、不同宽度)的测试图像集上进行实验,并计算上述指标的统计数据。此外,还可以通过可视化比较算法检测到的边缘与实际边缘来直观地评估算法的性能。均方误差(Mean Squared Error, MSE): 均方误差是算法检测到的边缘与实际边缘之间差异的平方的平均值。它衡量了算法的可靠性,即检测到的边缘有多少是准确的。Prewitt算子: Prewitt算子也是一种用于边缘检测的算子,通过计算图像的水平和垂直梯度来工作。

2024-02-28 22:22:31 1001

原创 【图像降噪】几种边缘保持的图像降噪方法

非局部均值去噪(Non-local Means Denoising): 非局部均值去噪算法通过考虑图像中每个像素与所有其他像素的相似性,来实现降噪同时保持边缘。边缘检测滤波器(Edge Detection Filters):如索贝尔滤波器(Sobel)、坎尼滤波器(Canny),它们主要用于识别图像中的边缘。非局部均值去噪(Non-Local Means Denoising):考虑图像中所有像素之间的相似性,通过加权平均来自图像其他区域的像素来减少噪声。用于并排显示原始图像和处理后的图像。

2024-02-28 22:14:52 2090

原创 【图像增强】matlab实现几种典型的图像增强算法

图像增强算法主要目的是改善图像的视觉效果或为后续处理(如图像分析、识别等)提供更好的图像质量。:通过拉伸图像的灰度直方图,使得直方图更加均匀分布,从而增加图像的对比度。:对数变换可以增强低亮度区域,使图像的整体对比度得到提升。:通过调整伽马值,可以对图像的暗部和亮部进行不同程度的增强。:使用高通滤波器(如拉普拉斯滤波器)增强图像的边缘和细节。:结合空间邻近度和像素相似度,对图像进行平滑处理同时保持边缘清晰。:通过提取图像的高频分量并加以增强,可以提升图像的细节。

2024-02-28 22:05:13 8189 8

原创 【滤波算法】几种自适应滤波算法

自适应滤波算法主要包括最小均方(Least Mean Squares, LMS)算法、归一化最小均方(Normalized Least Mean Squares, NLMS)算法和递推最小二乘(Recursive Least Squares, RLS)算法等。下面是这些算法在MATLAB中的基本实现。

2024-02-28 21:51:28 1768

原创 【形态学操作】OpenCV实现形态学操作,图像腐蚀、膨胀、开运算、闭运算、顶帽、黑帽等

在OpenCV中,图像形态学操作主要包括腐蚀(erode)、膨胀(dilate)、开运算(open)、闭运算(close)等,它们是基于结构元素(structural element)的大小和形状对图像进行处理的方法,常用于图像的噪声去除、边缘检测、图像分割和形状分析等。首先,确保您已经安装了OpenCV库。结构元素可以是不同形状和大小的核,例如圆形、十字形状等,通过调整核的大小和形状,可以得到不同的图像处理效果。:闭运算是先膨胀后腐蚀的组合操作,它可以填充小的洞,连接邻近的对象,同时保持对象的基本形状。

2024-02-28 07:21:29 1223

原创 【Qt】Qt中使用OpenCV实现图像分割

在这个例子中,我们创建了一个简单的GUI,包含加载图像和执行阈值分割的按钮,以及一个用于显示结果的标签。在Qt中使用OpenCV实现图像分割的一个常见方法是使用基于阈值的分割。下面的例子展示了如何创建一个Qt应用程序,使用OpenCV对图像进行阈值分割,并在Qt界面上显示结果。对于其他类型的分割算法,如基于区域的分割或聚类算法(例如k-means),您需要使用OpenCV中相应的函数(例如。:将分割后的图像转换为Qt可以显示的格式,并在Qt界面中显示结果。:调用OpenCV提供的函数来应用选定的算法。

2024-02-27 21:04:16 763

原创 【Qt】如何用Qt和OpenCV实现图像处理

此示例中,我们创建了一个带有两个按钮和一个标签的GUI。:使用Qt的文件对话框加载图像,然后使用OpenCV进行处理。处理后的图像可以转换为Qt兼容的格式并显示在GUI上。在实际应用中,图像处理算法可能会更加复杂,包括但不限于滤波、边缘检测、特征提取、图像分割等。:使用Qt Designer设计GUI,或者手动编码创建窗口、按钮、标签等控件。:确保您的开发环境中安装了Qt和OpenCV。:在Qt应用程序中调用OpenCV函数来实现所需的图像处理算法。:处理完成后,将处理后的图像更新到Qt的图像显示控件中。

2024-02-27 20:58:25 750

原创 【Python】Python如何提高办公效率

自动化社交媒体管理:使用Python的社交媒体API(如Twitter API或Facebook Graph API)来管理社交媒体账户,例如发布帖子、回复评论和跟踪粉丝。自动化财务管理:使用Python的Pandas库来处理和分析财务数据,例如收支、预算和报表。自动化报告生成和发送:使用Python的Jinja2模板引擎和smtplib库来生成自定义的报告,并通过电子邮件将其发送给相关人员。自动化邮件分类和回复:使用Python的自然语言处理技术来分析收到的电子邮件,并根据邮件内容自动分类和回复。

2024-02-27 20:50:16 1300

原创 【图像评价】几种图像质量评价方法及其实现案例

这些文献涵盖了从传统的峰值信噪比(PSNR)和结构相似性(SSIM)指数到更现代的无参考(NR)图像质量评估方法。因此,虽然主观质量评价方法在某些情况下(如新算法开发的初步评估)仍然具有重要作用,但在实际应用中往往需要结合客观质量评价指标,以提高评价效率和准确性。:当前的客观评价方法通常无法理解图像内容的上下文意义,例如,一个在艺术摄影中可接受的噪声水平可能在医疗成像中是不可接受的。:训练得到的客观评价模型可能在未见过的数据上表现不佳,尤其是在图像内容和失真类型多样化的情况下。

2024-02-27 00:00:12 9475

原创 【图像分割】matlab实现语义割算法

FCN是一种流行的语义分割网络,它将传统的CNN架构修改为了全卷积网络,使得网络可以接受任意尺寸的输入图像。未来,随着新算法和硬件技术的不断涌现,语义分割模型有望在精度、速度和鲁棒性方面得到进一步的提升,同时也将在医疗影像分析、自动驾驶、智能城市建设等更多领域发挥重要作用。在MATLAB中实现语义分割,除了上述提到的FCN和UNet,还有其他几种流行的模型可以使用。请注意,上面的代码中使用的是DeepLabv3模型,该模型预训练于COCO数据集。您需要根据自己的需求选择合适的模型和预训练权重文件。

2024-02-26 23:41:02 1628

原创 【目标检测】matlab利用区域生长实现目标检测

后处理:对生长后的区域进行形态学操作,如膨胀、腐蚀、开运算和闭运算,以去除小洞和连接断裂的区域。生长准则定义:定义区域生长的准则,如像素值相似性(强度、颜色)、纹理一致性、空间连续性等。选择种子点:选择代表目标区域的起始点,这些点可以是手工指定的,也可以是自动检测到的。定义生长准则:确定区域生长的准则,通常是基于像素值的相似性,例如强度、颜色或纹理。也可以根据需要进行选择,例如可以选择图像中的多个种子点,以覆盖更广泛的区域。执行区域生长:从种子点开始,根据定义的准则将相邻的像素添加到区域中。

2024-02-26 23:27:24 1109 2

原创 【算法移植】matlab代码向C移植

对于常见的数学运算和数据处理任务,可以使用C语言中的高效库,如BLAS、LAPACK、OpenCV等,这些库经过了高度优化,能够提供比MATLAB更快的执行速度。通过上述步骤,可以有效地优化从MATLAB到C语言的代码转换过程,确保转换后的代码不仅准确无误,而且性能优越。:如果算法允许,可以利用C语言中的并行计算能力,如OpenMP或CUDA,来加速代码的执行。:编写测试用例以确保C代码的正确性,并与MATLAB代码的输出进行比较,以验证转换的准确性。重构代码以提高可读性和可重用性。

2024-02-26 21:05:15 2900

原创 【算法移植】matlab代码向C++移植

在C++中,我们使用OpenCV库来完成相同的任务,因为OpenCV提供了丰富的图像处理功能。类型的参数,并使用C++的范围for循环来计算平方和。注意,MATLAB中的数组索引从1开始,而C++中从0开始,因此在C++代码中,循环的起始索引是0。此外,如果MATLAB代码中使用了特殊的库函数,在C++中可能需要找到相应的库或实现相似的功能。这里提供一个更复杂的例子:使用MATLAB实现图像的边缘检测,并将其转换为C++代码。对于MATLAB的内置函数,寻找C++库中的等效函数或实现自己的版本。

2024-02-26 20:58:55 1130

原创 【视觉显著性】几种图像显著性模型及其原理

应用案例:自动生成视频的关键帧摘要,帮助用户快速浏览视频内容。方法:结合显著性模型和时间序列分析,可以识别视频中的重要时刻和场景,并生成包含这些关键内容的摘要。

2024-02-26 20:27:20 2342

基于红外和可见光图像融合图像的目标检测

基于红外和可见光图像融合图像的目标检测

2024-03-23

基于视觉显著性的红外和可将光图像融合

基于视觉显著性的红外和可将光图像融合

2024-03-23

基于深度学习的红外和可见光图像融合

基于深度学习的红外和可见光图像融合

2024-03-23

基于opencv的红外图像和可见光图像融合

基于opencv的红外图像和可见光图像融合

2024-03-23

红外图像和可见光图像融合算法

红外图像和可见光图像融合算法

2024-03-23

计算机视觉库搭建opencv+ opencv-contrib 模块

流程参考网址:https://blog.csdn.net/Chris_zhangrx/article/details/80920339 Windows 下 Cmake 编译 OpenCV + opencv_contrib 模块

2024-02-21

红色警戒红警2游戏任务包

红警2任务包\红警2任务-古巴核弹危机 红警2任务包\红警2任务-消灭敌人 红警2任务包\红警2任务-边境防卫之心灵危机 红警2任务包\红警2任务-遭受袭击 红警2任务包\红警2任务-黄昏城市 红警2任务包\红警2任务-猎人与狐狸 红警2任务包\红警2任务-隐秘行动 红警2任务包\红警2任务-雷达横行 红警2任务包\红警2任务-核弹战争 红警2任务包\红警2任务-首都攻防战 红警2任务包\红警2任务-心灵破碎 红警2任务包\红警2任务-心灵行动 红警2任务包\红警2任务-要塞守卫战 红警2任务包\红警2任务-边境防守之科技盗取 红警2任务包\红警2任务-最后的较量 红警2任务包\红警2任务-蓄势待发 红警2任务包\红警2任务-连环攻击波 红警2任务包\红警2任务-我的团长我的团 红警2任务包\红警2任务-天堂之拳 红警2任务包\红警2任务-海市蜃楼 红警2任务包\红警2任务-南沙保卫战 红警2任务包\红警2任务-秘密地点 红警2任务包\红警2任务-焚风版盟20偏执狂 红警2任务包\红警2任务-救援 红警2任务包\红警2任务-保护核反应堆(超难) 红警2任务包\红警2任务-闪电战 红警2

2024-02-21

红色警戒2共辉塔防地图

共辉塔防地图\共和国之辉防守图-中国防守 共辉塔防地图\共辉2防守地图-坚守草原 共辉塔防地图\共和国之辉防守地图-坚守中立 共辉塔防地图\红警2变态防守地图 (2) 共辉塔防地图\共和国之辉防守地图-占领白宫 共辉塔防地图\红警2防守地图-马奇诺防线 共辉塔防地图\红警2原版T2防守塔防地图 共辉塔防地图\共和国之辉防守图-坚守岛屿 共辉塔防地图\红警2防守地图-死路一条 共辉塔防地图\共和国之辉地图防守图-守护钓鱼岛 共辉塔防地图\北极圈防守 共辉塔防地图\共和国之辉防守地图-人间炼狱 共辉塔防地图\红警2防守地图-要塞防守 共辉塔防地图\红警2变态防守地图 共辉塔防地图\红警2防守地图001~196

2024-02-21

红色警戒2共和国之辉任务包

共和国之辉任务包\共和国之辉任务-三国同围 共和国之辉任务包\共和国之辉任务-消灭敌军 共和国之辉任务包\共和国之辉任务-海战防守 共和国之辉任务包\共和国之辉任务-死守阵地 共和国之辉任务包\共和国之辉任务—小分队行动 共和国之辉任务包\共和国之辉任务—控制小日本 共和国之辉任务包\共和国之辉任务-时间曝光 共和国之辉任务包\共和国之辉任务-红色黎明9关 共和国之辉任务包\共和国之辉任务-解放台湾 共和国之辉任务包\共和国之辉任务-共和国之辉6关任务包 共和国之辉任务包\共和国之辉任务-城管入伍考核 共和国之辉任务包\共和国之辉任务包挑战24关 共和国之辉任务包\共和国之辉任务-伞兵的世界 共和国之辉任务包\共和国之辉任务-钓鱼岛事变 共和国之辉任务包\共和国之辉-超难防守

2024-02-21

红色警戒2修改完善软件

2014.7.27 1.增加对尤里的复仇MOD心灵终结3的支持 2.去除控制全部 《红色警戒2》是一款经典的即时战略游戏,于2000年发布,游戏背景设定在冷战时期的虚构世界,玩家需要扮演不同国家的指挥官,通过建设基地、训练军队、研发科技,最终击败敌人,游戏以其紧张刺激的战斗场面和丰富多样的战略选择,深受玩家喜爱。

2024-02-21

非下采样滤波器NSCT实现MATLAB

非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT) 类似小波变换,都是将源图像变换后对系数进行一些处理,再逆变换回目标图像。 NSCT是一种新型平移不变,多尺度,多方向性的快速变换。 NSCT是基于Nonsubsampled金字塔(NSP)和Nonsubsampled方向滤波器(NSDFB)的一种变换。首先由NSP对输入图像进行塔形分解,分解为高通和低通两个部分,然后由NSDFB将高频子带分解为多个方向子带,低频部分继续进行如上分解。

2022-06-02

耦合脉冲神经网络PCNN用matlab实现

脉冲耦合神经网络是Eckhorn于20世纪90年代开始提出的一种基于猫的视觉原理构建的简化 神经网络模型 。 脉冲耦合神经网络(PCNN-Pulse Coupled Neural Network)与传统神经网络相比,有着根本的不同。 PCNN有生物学的背景,它是依据猫、猴等动物的大脑皮层上的同步脉冲发放现象提出的。

2022-06-02

NeuralNetNUC.m

基于传统神经网络的非均匀性校正技术,是针对红外图像进行非均匀校正的神经网络学习技术,主要是针对两个状态变量的学习,增益和偏置,约3000帧以上的图像会有较好的结果,可根据现有逇技术进行升级改造。

2019-08-06

全局滤波.pdf

Most existing state-of-the-art image denoising algorithms are based on exploiting similarity between a relatively modest number of patches. These patch-based methods are strictly dependent on patch matching, and their performance is hamstrung by the ability to reliably find sufficiently similar patches. As the number of patches grows, a point of diminishing returns is reached where the performance improvement due to more patches is offset by the lower likelihood of finding sufficiently close matches. The net effect is that while patch based methods, such as BM3D, are excellent overall, they are ultimately limited in how well they can do on (larger) images with increasing complexity. In this paper, we address these shortcomings by developing a paradigm for truly global filtering where each pixel is estimated from all pixels in the image. Our objectives in this paper are two-fold. First, we give a statistical analysis of our proposed global filter, based on a spectral decomposition of its corresponding operator, and we study the effect of truncation of this spectral decomposition. Second, we derive an approximation to the spectral (principal) components using the Nyström extension. Using these, we demonstrate that this global filter can be implemented efficiently by sampling a fairly small percentage of the pixels in the image. Experiments illustrate that our strategy can effectively globalize any existing denoising filters to estimate each pixel using all pixels in the image, hence improving upon the best patch-based methods.

2019-08-06

基于引导滤波的图像增强算法.rar

基于引导滤波的图像分层处理技术,对不同层的信息进行分层处理,获取不同的信息,然后用合并,得到最后结果,可进行图像增强算法的分层等

2019-08-06

Overview of the RANSAC Algorithm

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and Bolles [1] is a general parameter estimation approach designed to cope with a large proportion of outliers in the input data. Unlike many of the common robust estimation techniques such as M-estimators and least-median squares that have been adopted by the computer vision community from the statistics literature, RANSAC was developed from within the computer vision community.

2018-04-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除