自我认识的方法模型图

本文探讨了马斯洛需求层次理论、达克效应、成长破圈等8个自我认知模型,帮助读者了解内在需求、克服认知偏差、提升自我价值,并找到合适的职业路径,以实现人生的成功和价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在漫长的人生旅途中,我们都在不断地探索、追寻,努力寻找那个最真实、最完整的自我。因为只有真正了解自己,才能战胜内心的种种困惑与恐惧,进而战胜外在的一切挑战与困难。自我认识,是每个人成长的必经之路,也是走向成功的第一步。

图片

一、马斯洛需求:洞察人性需求,规划人生

马斯洛需求层次理论为我们提供了一个深入了解人性的框架。通过审视自己在不同需求层次上的满足程度,我们可以更加清晰地认识自己的内心世界,从而规划出更符合自己需求的人生路径。

图片

二、达克效应:认知偏差,评价自己,靠近智者

达克效应揭示了人们在自我认知上普遍存在的偏差。我们往往会高估自己的能力和成就,而低估他人的贡献。因此,我们需要保持谦逊的态度,客观地评价自己,同时学会倾听他人的意见和建议,以便更好地完善自我。

图片

三、成长破圈:认识自我,突破圈层,提升自我

成长破圈强调的是打破自我设限,勇敢尝试新事物,不断挑战自己的极限。通过不断学习和实践,我们可以逐渐突破原有的圈层,提升自己的能力和境界,实现自我价值的最大化。

图片

四、人生画布模型:把自己当做公司经营

人生画布模型将个人成长与发展比作经营一家公司。我们需要像企业家一样,精心规划自己的人生目标,合理配置资源,不断调整策略,以便在竞争激烈的社会中脱颖而出。

图片

五、胜任力冰山模型:自我价值认识,能力提升

胜任力冰山模型揭示了个人能力的内在结构。冰山之上的部分是显性的知识和技能,而冰山之下的部分则是隐性的自我认知、动机和价值观等。通过深入挖掘自己的冰山之下部分,我们可以更加全面地认识自己的价值所在,进而有针对性地提升自己的能力。

图片

六、职业三叶草:找到完美职业

职业三叶草模型帮助我们理解职业选择的三个关键因素:兴趣、能力和价值。只有当这三个因素相互匹配时,我们才能找到那个真正适合自己的职业。因此,我们需要认真审视自己的兴趣所在,挖掘自己的潜在能力,并明确自己的价值观,以便找到那个能够让我们发挥所长、实现自我价值的职业。

图片

七、人生控制图:减少焦虑,控制人生,扩大影响圈

人生控制图提醒我们要关注自己的影响圈而非关注圈。通过积极行动,我们可以不断扩大自己的影响圈,从而掌握更多的人生主动权。这样,我们就能减少焦虑感,更加从容地面对生活中的种种挑战。

图片

八、NLP逻辑层次:层层规划,自我发展,人际关系

NLP逻辑层次模型为我们提供了一个从高到低、从抽象到具体的思考框架。通过层层规划,我们可以更加系统地思考自己的发展目标和路径,同时更好地处理与他人的关系,实现个人和社会的和谐共生。

图片

这八种自我认知的方法模型为我们提供了不同的视角和工具,帮助我们更加全面地认识自己、了解自己。只有当我们真正掌握了这些方法,才能更好地走向成功之路,实现人生的价值和意义。让我们从现在开始,用这些方法去探寻那个最真实、最完整的自我吧!

### 大模型微调方法与步骤 对于大模型微调的技术,特别是PEFT中的Prompt Tuning实验结果显示,在不同条件下有不同的优化策略[^1]。例如: - **Prompt长度**:在大规模模型上,即使Prompt长度仅为1也能够实现良好的性能;然而,从性价比的角度来看,长度设置为20表现最佳。 - **Prompt初始化方式**:Random Uniform初始化明显不如其余两种方案有效。值得注意的是,一旦模型规模增大至特定程度之后,各种初始化方法之间的差异变得不显著。 - **预训练方法的选择**:针对小型模型而言,LM Adaptation表现出最优的结果。但是,当涉及到更大尺寸的模型时,不同的预训练手段之间几乎没有区别。 - **微调迭代次数**:如果模型本身参数量较小,则增加更多的训练轮次有助于提升最终的表现质量。不过,随着模型复杂度的增长,即便减少调整次数也可以获得令人满意的成果。 为了帮助理解这些概念并提供更直观的认识,确实存在一些资源可以辅助学习者更好地掌握这一领域的内容[^2]。虽然具体的图表未在此处展示,但推荐寻找官方文档或者学术论文中通常会包含详细的流程图以及对比分析图形来说明上述提到的各项指标变化趋势及其影响因素。 ```python # 示例代码用于演示如何加载和处理数据集以准备进行微调操作 import transformers as trfms model_name = 'bert-base-uncased' tokenizer = trfms.BertTokenizer.from_pretrained(model_name) dataset = ... # 加载自己的数据集 tokenized_dataset = dataset.map(lambda e: tokenizer(e['text'], truncation=True, padding='max_length'), batched=True) # 定义超参数配置 prompt_length = 20 initialization_method = 'non_random_uniform' # 假设这里选择了除随机均匀分布外的方式 pretraining_approach = 'lm_adaptation_for_small_model' def fine_tune_model(): pass # 实现具体微调逻辑 fine_tune_model() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值