【研究】车路云VS低空经济,谁的机会更大?

从市场空间来看,低空经济和车路云均作为现有交通体系的升级,长期体量均较大,但受空域场景限制,低空经济中期市场规模或稍低于车路云一体化。

文章正文

近期,随着车路云一体化相关政策持续推进,车路云一体化、低空经济两大新兴产业似乎正在展开一场你追我赶的激烈角逐。

那么,车路云与低空经济,谁的机会更大?两者产业链的异同点又有哪些?

7月6日,国联证券包承超团队从政策进度、产业化进展、产业链环节、市场空间以及市场表现等维度对这两大新兴产业进行了对比分析。该团队认为:

①政策视角看,车路云政策体系更完善,低空缺乏标准文件。

②产业化进展视角看,车路云产业化阶段和招标进度略快于低空经济。

③产业链各环节对比来看,我们将车路云一体化和低空经济产业链均拆分为主机制造端、基础设施端、服务平台端三个板块,基建均为产业发展基础,是前期重点方向。

④市场空间来看,低空经济和车路云均作为现有交通体系的升级,长期体量均较大,但受空域场景限制,低空经济中期市场规模或稍低于车路云一体化。

⑤市场端表现来看,车路云、低空经济在事件催化带动行情启动后,基建端细分行业均显著走强。

车路云VS低空经济

1.政策端进度

包承超团队认为,车路云政策体系更完善,低空缺乏标准文件:

智能网联汽车概念于2015年提出,经历多轮的标准体系建设后,在2020年发布顶层设计文件,目前已处于大规模试点落地阶段。

低空经济的概念虽在2010 年就已提及,但早期政策重点围绕监管,导致产业进展推进相对缓慢;目前顶层设计落地不久,尚未进入大规模试点阶段。

值得注意的是,车路云一体化建设已有更详细的标准框架体系,低空经济有待进一步落定。

2.产业化进展:

该团队认为,车路云产业阶段和招标进度均领先低空经济:

从技术研发→测试验证→应用探索→商业化部署四个阶段来看,车路云一体化产业经历了封闭测试场、公开道路、先导应用、车路云试点四个阶段,低空经济在空域改革试点、密集试飞、先导应用后,仍未进入大规模试点。

对比已发布招投标项目,短期车路云一体化在①路侧感知、网联、云控等基础设施的实际建设;②招投标项目金额和规模;③地方政府资金支持力度三个方面均领先于低空经济,侧面也能够反映车路云产业进度更快。

3.产业链对比:

包承超团队认为,车路云和低空经济的基建端是前期重点方向,且车路云一体化和低空经济产业链较为类似,均可拆分为主机制造端、基础设施端、服务平台端三个板块。具体如下:

1)主机制造端:智能网联汽车发展速度更快,技术更成熟,未来主要增量为OBU 装载;航空器制造产业链较长,技术壁垒较高,预期未来体量大,但目前仍有技术短板。

2)基础设施端:智能化路侧设施关键技术突破、政策推进快、场景需求大,有望成为车路云一体化中增速最快的板块;低空相关基建前期由政府投入,集中在航路设计、通导监设备、智联网平台搭建等,未来空间大但建设节奏慢。

3)服务平台端:云控平台产值增量有限,但增速可观;空管系统是低空运行的保障,贯穿低空经济发展的始终。

4.市场空间对比

包承超团队认为,市场空间方面,受空域场景限制,低空经济中期市场规模或稍低于车路云一体化:

对比车路云一体化和低空经济整体市场规模预测,到2030年,预计车路云一体化产业链整体市场规模达到2.6万亿元,而低空经济产业链整体市场规模约2万亿元,车路云整体规模更大。

AI推动半导体行业翻倍增长

2024年7月4日-7月6日,为期三天的世界人工智能大会(WAIC)在上海举行。连续的高温天气,并未阻挡大家的热情。尽管气温不断攀升,会场上依旧人头攒动。

来自学术界、产业界的精英们就AI的发展前景、挑战及治理等关键问题展开了深入探讨。从清华大学的薛澜、周伯文,到 盖思新,再到黑石集团创始人苏世民,以及三位图灵奖得主罗杰·瑞迪、曼纽尔·布卢姆和姚期智,与会专家们从不同角度审视了AI的重要性。

未来8-9年,AI推动半导体行业翻倍增长

从半导体行业的角度分享了见解。他指出,AI正推动半导体行业快速增长,预计8-9年内销售额将从5000亿美元翻倍至1万亿美元。盖思新还强调了在芯片设计过程中考虑安全性、合规性和能效的重要性。

苏世民 —— 黑石集团董事长、首席执行官兼联合创始人

AI改变企业估值方式,应从5-10年的周期评估AI对投资标的的影响

黑石集团创始人苏世民分享了AI对投资领域的影响。他认为AI正在改变企业估值方式,一些公司因AI融合而受益,而另一些则面临挑战。

苏世民强调了在投资决策中考虑AI长期影响的重要性,建议从5-10年的周期来评估AI对投资标的的潜在影响。他指出,投资者需要对AI可能带来的颠覆性变化保持警惕,同时也要认识到AI创造的新机会。苏世民建议投资者关注那些能够有效整合AI的企业,同时警惕可能因AI发展而被淘汰的行业。

但在增长之外,与会者也提示了AI背后的风险。

三位图灵奖得主 —— 罗杰·瑞迪、曼纽尔·布卢姆和姚期智

罗杰·瑞迪:AI可能带来生产效率和GDP的数倍增长

罗杰·瑞迪则呼吁要平衡看待AI的发展。他指出,每项新技术都会带来机遇和挑战,不应因为潜在风险就放弃发展。他预测AI可能带来生产效率和GDP的数倍增长。强调了AI作为工具的重要性,呼吁更多关注如何利用AI提升人类能力。瑞迪强调需要投资研究, 探索如何更好地利用AI技术,使AI成为增强人类智能的工具,帮助人们的工作效率提高10-100倍。

曼纽尔·布卢姆:CTM模型为AI开发提供了启发

曼纽尔·布卢姆分享了他在意识研究领域20多年的心得。他介绍了他与同事共同开发的"有意识的图灵机"(CTM)模型。这一模型将大脑比作一个剧场,其中有观众(神经元)在聆听舞台上发生的事情(有意识的想法)。台上有人在讲话、提问题、回答,这就是向所有观众进行广播。发生意识的时候,所有的听众听到了所传播的有意识的想法。布卢姆强调,CTM模型的独特之处在于它没有中央决策者,而是让每个"参与者"都能贡献重要信息。这一模型为理解人类意识提供了新视角,也为开发通用人工智能提供了启发。

姚期智:关注AI带来的风险,研究如何与之共存

姚期智着重讨论了AI带来的潜在风险及其治理问题。他将AI风险分为三类:

1)网络安全风险的扩大

2)社会结构快速变革带来的未知风险

3)生存或存在风险

姚期智指出,作为计算机科学家,他特别关注第一类和第三类风险。他强调,AI的出现使得网络安全面临的挑战与40-50年前的情况相似,需要专家关注。同时,他也对AI可能带来的存在风险表示担忧,认为人类创造了一个可能比自己强大得多的新物种,如何与之共存是一个重大挑战。

薛 澜 —— 清华大学苏世民书院院长、清华大学人工智能国际治理研究院院长

积极与不利,人工智能的双重性质

薛澜以联合国可持续发展目标(SDG)的169个具体指标为例,指出人工智能可能对其中134个(79%)带来积极促进作用,但也可能对59个(约35%)产生不利影响,这些不利影响包括技术内在问题、数据安全、算法歧视等,这些都需要通过有效的治理来管控。

周伯文 ——上海人工智能实验室主任、清华大学惠妍讲席教授

做好AI安全和性能的平衡

提出了"AI 45度平衡率"的概念。他强调需要在AI的安全性与性能之间找到平衡,并提出了"可信AGI的因果之梯"的技术路径,包括泛对齐、可干预和能反思三个阶段。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值