Find 7 Faster Than John Von Neumann

描述:

It was said that when testing the first computer designed by von Neumann, people gave the following problem to both the legendary professor and the new computer: If the 4th digit of 2^n is 7, what is the smallest n? The machine and von Neumann began computing at the same moment, and von Neumann gave the answer first. Now you are challenged with a similar but more complicated problem: If the K-th digit of M^n is 7, what is the smallest n?


输入:

Each case is given in a line with 2 numbers: K and M (< 1,000).


输出:

For each test case, please output in a line the smallest n.

You can assume: 

The answer always exist. 
The answer is no more than 100.


样例输入:

3 2
4 2
4 3


样例输出:

15
21
11


题目大意:

给出k和m求出最小的n,使得m的n次方的第k位为7。


代码如下:

#include<stdio.h>
#include<string.h>
#define N 1005
int n;
int k,m;
int asd[1005];
void check(int q)
{
	while(asd[q]!=7)                         //判断第k位是否已经等于7 
	{
		for(int i=0;i<N;i++)				//利用数组来存入大数一位一位的处理			
		{
			asd[i]=asd[i]*m;
		}
		for(int i=0;i<N;i++)				
		{
			asd[i+1]=asd[i]/10+asd[i+1];	//不断地将低位的数字除以10后加到高位去  
			asd[i]=asd[i]%10;				 
		}	
		n++;	
	}
}
int main()
{
	while(scanf("%d %d",&k,&m)!=EOF)
	{
		memset(asd,0,sizeof(asd));
		n=0;
		asd[0]=1;
		check(k-1);
		printf("%d\n",n); 
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值