数据分享 | 中山大学发布全球2000年—2015年30m分辨率逐年土地覆盖数据

中山大学发布了一套2000年至2015年全球30米分辨率的逐年土地覆盖数据集AGLC-2000-2015,利用多种数据源和机器学习方法,精度优于现有同类产品。数据集详细评估显示,基准年2015年的总体精度达76.10%,Kappa系数0.72。此外,研究还分析了不同区域的土地覆盖动态变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

目录

1.数据产品概述

2.数据源及分类体系

3.数据生产方法

4.数据精度评价

5.土地覆盖动态变化

6.论文及数据获取

文章引用格式

论文原文链接

数据访问链接

公开获取地址


1.数据产品概述

研究学者借助Google Earth Engine平台,利用现有多套全球土地覆盖产品、Landsat卫星系列影像、以及大量人工目视解译样本,结合多数据融合、时序变化检测和机器学习等的方法,研制了一套2000年—2015年全球30 m分辨率的逐年土地覆盖变化数据集AGLC-2000-2015(Annual Global Land Cover 2000-2015)。

基于AGLC-2000-2015数据集,本文选择性分析了3个典型区域的土地覆盖年际变化进行检验。结果显示,AGLC-2000-2015数据集达到了较高的精度水平:基准年份产品(AGLC-2015)的总体精度为76.10%,Kappa系数为0.72,显著优于现有30 m分辨率的全球土地覆盖产品Globeland 30、FROM-GLC和GLC-FCS30;年际间分类模型的总体精度和Kappa系数分别为84.10%和0.81,在各大洲的平均总体精度均超过80.00%,表明该模型在全球多类别土地覆盖分类中表现良好。

2.数据源及分类体系

该研究使用的土地覆盖产品包括以下7套:全球土地覆盖数据集Globeland30,全球土地覆盖数据集FROM-GLC,全球精细地表覆盖产品数据集GLC-FCS30,全球连续时间城市用地动态扩张和返绿数据集GAUD,全球森林变化数据GFC,全球水体数据集JRC GSW,以及全球陆地覆盖数据集ESA CCI-LC。

Landsat系列影像来自于Google Earth Engine平台提供的Landsat 5 TM(2000年—2011年)、Landsat 7 ETM+(2011年—2013年)、以及Landsat 8 OLI(2013年—2015年)传感器经大气校正和地形校正的地表反射率数据

该研究采用的分类体系如下表所示。参考现有的土地覆盖分类体系(Chen等,2016),结合实际情况,本文的土地覆盖分类体系包括耕地、林地、草地、灌木、湿地、水体、苔原、不透水面、裸地和永久冰雪共10种类型。

图片

3.数据生产方法

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值