考研数学《函数、极限、连续》八大核心考点精讲
引言
函数、极限与连续是高等数学的基石,直接影响积分、微分方程等后续章节。本文从实战角度系统梳理8大核心考点,助你高效备考!
考点一:函数的特性
1️⃣ 单调性
- f ′ ( x ) ≥ 0 f'(x) \geq 0 f′(x)≥0(仅在孤点处取等号) ⇒ f ( x ) \Rightarrow f(x) ⇒f(x)单调递增
- f ′ ( x ) ≤ 0 f'(x) \leq 0 f′(x)≤0(仅在孤点处取等号) ⇒ f ( x ) \Rightarrow f(x) ⇒f(x)单调递减
2️⃣ 有界性
- 定义: ∃ M > 0 , ∣ f ( x ) ∣ ≤ M \exists M>0,\ |f(x)| \leq M ∃M>0, ∣f(x)∣≤M
- 闭区间: [ a , b ] [a,b] [a,b]上连续函数必的有界
- 开区间: ( a , b ) (a,b) (a,b)上连续且 lim x → a + f ( x ) , lim x → b − f ( x ) \lim\limits_{x\to a^+}f(x),\lim\limits_{x\to b^-}f(x) x→a+limf(x),x→b−limf(x)存在 ⇒ f ( x ) \Rightarrow f(x) ⇒f(x)有界
- 反三角函数:如 arctan x \arctan x arctanx在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)有界
3️⃣ 周期性
- 定义: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
- 伸缩变换: f ( a x + b ) f(ax+b) f(ax+b)的周期为 T / ∣ a ∣ T/|a| T/∣a∣
4️⃣ 奇偶性
- 奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x)
- 偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x)
运算规律
运算 | 奇±奇 | 奇×奇 | 偶±偶 | 偶×偶 | 奇±偶 |
---|---|---|---|---|---|
结果 | 奇 | 奇 | 偶 | 偶 | 非奇非偶 |
5️⃣ 导函数与原函数特性
原函数性质 | 导函数性质 | 逆命题是否成立 |
---|---|---|
偶函数 | 奇函数 | 是 |
奇函数 | 偶函数 | 否 |
周期函数 | 周期函数 | 是 |
单调函数 | 不一定单调 | - |
考点二:极限的概念与性质
1️⃣ 极限定义
∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − α ∣ < δ 时 , ∣ f ( x ) − A ∣ < ε ⇔ x → α 时, f ( x ) = A + α \forall \varepsilon>0,\ \exists \delta>0,\ 当0<|x-\alpha|<\delta\ 时,\ |f(x)-A|<\varepsilon\Leftrightarrow x\rightarrow \alpha 时,f(x)=A+\alpha ∀ε>0, ∃δ>0, 当0<∣x−α∣<δ 时, ∣f(x)−A∣<ε⇔x→α时,f(x)=A+α
2️⃣ 重要性质
- 唯一性:极限存在则唯一
- 局部保号性:若 lim x → x 0 f ( x ) = A > 0 \lim\limits_{x\to x_0}f(x)=A>0 x→x0limf(x)=A>0,则存在邻域使 f ( x ) > 0 f(x)>0 f(x)>0
- 局部有界性:极限存在 ⇒ f ( x ) \Rightarrow f(x) ⇒f(x)在邻域内有界
考点三:无穷小的比较
1️⃣ 阶的定义
- 若 lim x → x 0 α β = 0 \lim\limits_{x\to x_0}\frac{\alpha}{\beta}=0 x→x0limβα=0,则称 α \alpha α是 β \beta β的高阶无穷小
- 若 lim x → x 0 α β k = C ≠ 0 \lim\limits_{x\to x_0}\frac{\alpha}{\beta^k}=C\neq0 x→x0limβkα=C=0,则称 α \alpha α是 β \beta β的 k k k阶无穷小
2️⃣ 等价无穷小( x → 0 x\to0 x→0)
sin x ∼ x tan x ∼ x 1 − cos x ∼ 1 2 x 2 e x − 1 ∼ x ln ( 1 + x ) ∼ x ( 1 + x ) α − 1 ∼ α x \begin{align*} \sin x &\sim x \\ \tan x &\sim x \\ 1-\cos x &\sim \frac{1}{2}x^2 \\ e^x-1 &\sim x \\ \ln(1+x) &\sim x \\ (1+x)^{\alpha}-1 &\sim \alpha x \\ \end{align*} sinxtanx1−cosxex−1ln(1+x)(1+x)α−1∼x∼x∼21x2∼x∼x∼αx
3️⃣ 替换原则
⚠️ 乘除可直接替换,加减需谨慎!
考点三:无穷小的比较
1️⃣ 高阶无穷小的运算规则
- 定义:若 lim x → x 0 α ( x ) β ( x ) = 0 \lim\limits_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=0 x→x0limβ(x)α(x)=0,则称 α ( x ) \alpha(x) α(x) 是 β ( x ) \beta(x) β(x) 的高阶无穷小,记作 α ( x ) = o ( β ( x ) ) \alpha(x)=o(\beta(x)) α(x)=o(β(x))。
- 运算性质:
x k ⋅ o ( x m ) = o ( x k + m ) o ( x k ) ⋅ o ( x m ) = o ( x k + m ) o ( x k ) + o ( x m ) = o ( x min ( k , m ) ) ( 当 k e q m ) \begin{align*} x^k \cdot o(x^m) &= o(x^{k+m}) \\ o(x^k) \cdot o(x^m) &= o(x^{k+m}) \\ o(x^k) + o(x^m) &= o(x^{\min(k,m)}) \quad (\text{当 } k eq m) \\ \end{align*} xk⋅o(xm)o(xk)⋅o(xm)o(xk)+o(xm)=o(xk+m)=o(xk+m)=o(xmin(k,m))(当 keqm) - 示例:
x = o ( x 2 ) , o ( x ) ⋅ o ( x ) = o ( x 2 ) , o ( x ) + o ( x 2 ) = o ( x ) x = o(x^2),\quad o(x) \cdot o(x) = o(x^2),\quad o(x) + o(x^2) = o(x) x=o(x2),o(x)⋅o(x)=o(x2),o(x)+o(x2)=o(x)
2️⃣ 无穷小的阶
- 定义:若 lim x → 0 f ( x ) x k = c ≠ 0 \lim\limits_{x\to 0}\frac{f(x)}{x^k}=c \neq 0 x→0limxkf(x)=c=0,则称 f ( x ) f(x) f(x) 是 x → 0 x\to0 x→0 时的 k k k 阶无穷小。
- 关键点:
- 阶数越高,趋近于0的速度越快。
- 例如: x 2 x^2 x2 是比 x x x 高阶的无穷小。
3️⃣ 常见的等价无穷小( x → 0 x\to0 x→0)
等价关系 | 记忆技巧 |
---|---|
x ∼ sin x x \sim \sin x x∼sinx | 泰勒展开首项 |
x ∼ tan x x \sim \tan x x∼tanx | 图像在原点附近重合 |
x ∼ arcsin x x \sim \arcsin x x∼arcsinx | 反函数对称性 |
x ∼ arctan x x \sim \arctan x x∼arctanx | |
ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x | 自然对数展开 |
e x − 1 ∼ x e^x -1 \sim x ex−1∼x | 指数函数展开 |
( 1 + x ) α − 1 ∼ α x (1+x)^\alpha -1 \sim \alpha x (1+x)α−1∼αx | 二项式近似 |
1 − cos ( k x ) ∼ 1 2 k 2 x 2 1-\cos(kx) \sim \frac{1}{2}k^2x^2 1−cos(kx)∼21k2x2 | 余弦泰勒展开 |
x − ln ( 1 + x ) ∼ 1 2 x 2 x - \ln(1+x) \sim \frac{1}{2}x^2 x−ln(1+x)∼21x2 | 泰勒展开高阶项 |
e x − x − 1 ∼ 1 2 x 2 e^x - x -1 \sim \frac{1}{2}x^2 ex−x−1∼21x2 | |
x − sin x ∼ 1 6 x 3 x - \sin x \sim \frac{1}{6}x^3 x−sinx∼61x3 | 正弦泰勒展开 |
tan x − x ∼ 1 3 x 3 \tan x - x \sim \frac{1}{3}x^3 tanx−x∼31x3 | 正切泰勒展开 |
x − arcsin x ∼ − 1 6 x 3 x - \arcsin x \sim -\frac{1}{6}x^3 x−arcsinx∼−61x3 | 反三角函数展开 |
arctan x − x ∼ − 1 3 x 3 \arctan x - x \sim -\frac{1}{3}x^3 arctanx−x∼−31x3 |
4️⃣ 重要结论
(1) 等价定理
- 替换原则:
- 乘除:可直接用等价无穷小替换,如 lim x → 0 sin x ⋅ ln ( 1 + x ) x 2 = lim x → 0 x ⋅ x x 2 = 1 \lim\limits_{x\to0}\frac{\sin x \cdot \ln(1+x)}{x^2} = \lim\limits_{x\to0}\frac{x \cdot x}{x^2}=1 x→0limx2sinx⋅ln(1+x)=x→0limx2x⋅x=1。
- 加减:需谨慎!若替换后分子/分母为异号高阶小量,可能产生错误。
反例: lim x → 0 tan x − sin x x 3 ≠ lim x → 0 x − x x 3 = 0 \lim\limits_{x\to0}\frac{\tan x - \sin x}{x^3} \neq \lim\limits_{x\to0}\frac{x - x}{x^3}=0 x→0limx3tanx−sinx=x→0limx3x−x=0(实际应为 1 2 \frac{1}{2} 21)。
- 充要条件: α ∼ β ⟺ α = β + o ( β ) \alpha \sim \beta \iff \alpha = \beta + o(\beta) α∼β⟺α=β+o(β)。
(2) 含变限积分的等价
-
积分等价性
若 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 在 x = 0 x=0 x=0 的某邻域内连续,且
lim x → 0 f ( x ) g ( x ) = 1 , \lim_{x\to0}\frac{f(x)}{g(x)}=1, x→0limg(x)f(x)=1,
则当 x → 0 x\to0 x→0 时,
∫ 0 x f ( t ) d t ∼ ∫ 0 x g ( t ) d t . \int_0^x f(t)\,dt \sim \int_0^x g(t)\,dt. ∫0xf(t)dt∼∫0xg(t)dt.
关键点:积分等价性成立的条件是 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 本身等价,而非仅积分上限等价。 -
积分上限为函数时的阶数计算
若 x → 0 x\to0 x→0 时,
f ( t ) ∼ a t m , g ( x ) ∼ b x n , f(t) \sim a t^m, \quad g(x) \sim b x^n, f(t)∼atm,g(x)∼bxn,
则积分
∫ 0 g ( x ) f ( t ) d t 的阶数为 n ( m + 1 ) . \int_0^{g(x)} f(t)\,dt \quad \text{的阶数为} \quad n(m+1). ∫0g(x)f(t)dt的阶数为n(m+1).
推导过程:
∫ 0 g ( x ) f ( t ) d t ≈ ∫ 0 b x n a t m d t = a m + 1 ( b x n ) m + 1 = a b m + 1 m + 1 x n ( m + 1 ) . \int_0^{g(x)} f(t)\,dt \approx \int_0^{b x^n} a t^m\,dt = \frac{a}{m+1} \left(b x^n\right)^{m+1} = \frac{a b^{m+1}}{m+1} x^{n(m+1)}. ∫0g(x)f(t)dt≈∫0bxnatmdt=m+1a(bxn)m+1=m+1abm+1xn(m+1).
记忆口诀:“上限次数 ×(被积函数次数 + 1)”。 -
求导定阶
若 f ( x ) f(x) f(x) 是 x → 0 x\to0 x→0 时的 n n n 阶无穷小(即 f ( x ) ∼ C x n f(x) \sim C x^n f(x)∼Cxn),则其导数
f ′ ( x ) ∼ C n x n − 1 , f'(x) \sim C n x^{n-1}, f′(x)∼Cnxn−1,
为 x → 0 x\to0 x→0 时的 n − 1 n-1 n−1 阶无穷小。
(3) 常见函数的泰勒展开( x → 0 x\to0 x→0)
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ ( ∣ x ∣ < 1 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ sin x = x − x 3 3 ! + x 5 5 ! − ⋯ cos x = 1 − x 2 2 ! + x 4 4 ! − ⋯ \begin{align*} e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \quad (|x|<1) \\ (1+x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \\ \end{align*} exln(1+x)(1+x)αsinxcosx=1+x+2!x2+3!x3+⋯=x−2x2+3x3−⋯(∣x∣<1)=1+αx+2!α(α−1)x2+⋯=x−3!x3+5!x5−⋯=1−2!x2+4!x4−⋯
⚠️ 陷阱提示
-
等价替换仅限乘除:
错误示例: lim x → 0 tan x − x x 3 = 错误替换 lim x → 0 x − x x 3 = 0 \lim\limits_{x\to0}\frac{\tan x - x}{x^3} \xlongequal{\text{错误替换}} \lim\limits_{x\to0}\frac{x - x}{x^3}=0 x→0limx3tanx−x错误替换x→0limx3x−x=0
正确解法:用泰勒展开 tan x = x + 1 3 x 3 + o ( x 3 ) \tan x = x + \frac{1}{3}x^3 + o(x^3) tanx=x+31x3+o(x3),得极限为 1 3 \frac{1}{3} 31。 -
加减法的陷阱:
当分子/分母为异号高阶小量时,直接替换可能导致错误。
考点四:函数求极限
1️⃣ 分析类型
判断是否为 0 0 \frac{0}{0} 00、 ∞ / ∞ \infty/\infty ∞/∞等未定式
2️⃣ 化简技巧
- 计算非零因子
- 拆分极限存在的项
- 提取公因子
- 等价代换
- 幂指函数指数化
- 根式有理化
- 变量替换
3️⃣ 计算方法:
- 洛必达法则
- 泰勒展开(推荐精度:分子分母同阶)
考点五:极限反问题
1️⃣ 已知极限求另一极限
将未知极限通过四则运算转化为已知形式
2️⃣ 已知极限求参数
方法同上
考点六:渐近线
- 垂直渐近线: lim x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty x→x0limf(x)=∞
- 水平渐近线: lim x → ± ∞ f ( x ) = A \lim\limits_{x\to\pm\infty}f(x)=A x→±∞limf(x)=A
- 斜渐近线:
y
=
k
x
+
b
y=kx+b
y=kx+b,其中
k = lim x → ∞ f ( x ) x , b = lim x → ∞ ( f ( x ) − k x ) k=\lim\limits_{x\to\infty}\frac{f(x)}{x},\quad b=\lim\limits_{x\to\infty}(f(x)-kx) k=x→∞limxf(x),b=x→∞lim(f(x)−kx)
📌 注意:水平与斜渐近线不共存
考点七:间断点分类
1️⃣ 连续性
函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处连续,需满足以下三个条件:
- f ( x ) f(x) f(x) 在 x 0 x_0 x0 处有定义:即 f ( x 0 ) f(x_0) f(x0) 存在。
- 极限存在: lim x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) x→x0limf(x) 存在。
- 函数值等于极限值: lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0} f(x) = f(x_0) x→x0limf(x)=f(x0)。
2️⃣ 间断点及其类型
- 可去间断点:左右极限存在且相等
- 跳跃间断点:左右极限存在但不等
- 第二类间断点:至少一侧极限不存在(无穷或者震荡)
考点八:数列极限(单调有界准则证明)
1️⃣ 有界性证明
(1) 数学归纳法
步骤:
- 基例:验证 u 1 u_1 u1 或前几项满足不等式(如 u 1 ≤ M u_1 \leq M u1≤M)。
- 归纳假设:假设 u k ≤ M u_k \leq M uk≤M 成立。
- 递推:证明 u k + 1 ≤ M u_{k+1} \leq M uk+1≤M。
(2) 放缩法
核心思想:
- 单调递增数列:找上界 M M M,使得 u n ≤ M u_n \leq M un≤M 对所有 n n n 成立。
- 单调递减数列:找下界 m m m,使得 u n ≥ m u_n \geq m un≥m 对所有 n n n 成立。
技巧:
- 利用已知不等式(如均值不等式、三角不等式)。
- 对复杂表达式进行适当放大或缩小。
2️⃣ 单调性证明
(1) 无递推关系
常用方法:
- 作差法:分析
u
n
+
1
−
u
n
u_{n+1} - u_n
un+1−un 的符号。
u n + 1 − u n > 0 (递增), u n + 1 − u n < 0 (递减) u_{n+1} - u_n >0 (递增), u_{n+1} - u_n <0 (递减) un+1−un>0(递增),un+1−un<0(递减) - 不等式法:利用均值不等式、泰勒展开等工具。
- 导数法:若 f ( x ) f(x) f(x) 可导且 u n + 1 = f ( u n ) u_{n+1} = f(u_n) un+1=f(un),通过 f ′ ( x ) f'(x) f′(x) 判断单调性。
(2) 有递推关系 u n + 1 = f ( u n ) u_{n+1} = f(u_n) un+1=f(un)
方法一:作差法
- 构造
g
(
x
)
=
f
(
x
)
−
x
g(x) = f(x) - x
g(x)=f(x)−x,分析
g
(
u
n
)
g(u_n)
g(un) 的符号。
u n + 1 − u n = g ( u n ) u_{n+1} - u_n = g(u_n) un+1−un=g(un)
方法二:递推函数单调性
- 若
f
(
x
)
f(x)
f(x) 单调递增:
- 若 u 1 ≤ f ( u 1 ) u_1 \leq f(u_1) u1≤f(u1),则数列单调递增。
- 若 u 1 ≥ f ( u 1 ) u_1 \geq f(u_1) u1≥f(u1),则数列单调递减。
- 若
f
(
x
)
f(x)
f(x) 单调递减:
- 数列不单调,需用夹逼准则或其他方法。
⚠️ 陷阱提示
- 递推函数单调性误判:
若 f ( x ) f(x) f(x) 单调递减,数列可能振荡收敛(如 u n + 1 = − u n + 1 u_{n+1} = -u_n + 1 un+1=−un+1)。 - 夹逼准则滥用:需确保两边的极限相同。
- 数学归纳法基础步遗漏:必须验证初始项成立。
补充:反三角函数定义与性质