1.1函数、极限、连续

考研数学《函数、极限、连续》八大核心考点精讲

引言

函数、极限与连续是高等数学的基石,直接影响积分、微分方程等后续章节。本文从实战角度系统梳理8大核心考点,助你高效备考!


考点一:函数的特性

1️⃣ 单调性

  • f ′ ( x ) ≥ 0 f'(x) \geq 0 f(x)0(仅在孤点处取等号) ⇒ f ( x ) \Rightarrow f(x) f(x)单调递增
  • f ′ ( x ) ≤ 0 f'(x) \leq 0 f(x)0(仅在孤点处取等号) ⇒ f ( x ) \Rightarrow f(x) f(x)单调递减

2️⃣ 有界性

  • 定义 ∃ M > 0 ,   ∣ f ( x ) ∣ ≤ M \exists M>0,\ |f(x)| \leq M M>0, f(x)M
  • 闭区间 [ a , b ] [a,b] [a,b]上连续函数必的有界
  • 开区间 ( a , b ) (a,b) (a,b)上连续且 lim ⁡ x → a + f ( x ) , lim ⁡ x → b − f ( x ) \lim\limits_{x\to a^+}f(x),\lim\limits_{x\to b^-}f(x) xa+limf(x),xblimf(x)存在 ⇒ f ( x ) \Rightarrow f(x) f(x)有界
  • 反三角函数:如 arctan ⁡ x \arctan x arctanx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)有界

3️⃣ 周期性

  • 定义 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)
  • 伸缩变换 f ( a x + b ) f(ax+b) f(ax+b)的周期为 T / ∣ a ∣ T/|a| T/∣a

4️⃣ 奇偶性

  • 奇函数 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)
  • 偶函数 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)
运算规律
运算奇±奇奇×奇偶±偶偶×偶奇±偶
结果非奇非偶

5️⃣ 导函数与原函数特性

原函数性质导函数性质逆命题是否成立
偶函数奇函数
奇函数偶函数
周期函数周期函数
单调函数不一定单调-

考点二:极限的概念与性质

1️⃣ 极限定义

∀ ε > 0 ,   ∃ δ > 0 ,  当 0 < ∣ x − α ∣ < δ  时 ,   ∣ f ( x ) − A ∣ < ε ⇔ x → α 时, f ( x ) = A + α \forall \varepsilon>0,\ \exists \delta>0,\ 当0<|x-\alpha|<\delta\ 时,\ |f(x)-A|<\varepsilon\Leftrightarrow x\rightarrow \alpha 时,f(x)=A+\alpha ε>0, δ>0, 0<xα<δ , f(x)A<εxα时,f(x)=A+α

2️⃣ 重要性质

  • 唯一性:极限存在则唯一
  • 局部保号性:若 lim ⁡ x → x 0 f ( x ) = A > 0 \lim\limits_{x\to x_0}f(x)=A>0 xx0limf(x)=A>0,则存在邻域使 f ( x ) > 0 f(x)>0 f(x)>0
  • 局部有界性:极限存在 ⇒ f ( x ) \Rightarrow f(x) f(x)在邻域内有界

考点三:无穷小的比较

1️⃣ 阶的定义

  • lim ⁡ x → x 0 α β = 0 \lim\limits_{x\to x_0}\frac{\alpha}{\beta}=0 xx0limβα=0,则称 α \alpha α β \beta β的高阶无穷小
  • lim ⁡ x → x 0 α β k = C ≠ 0 \lim\limits_{x\to x_0}\frac{\alpha}{\beta^k}=C\neq0 xx0limβkα=C=0,则称 α \alpha α β \beta β k k k阶无穷小

2️⃣ 等价无穷小( x → 0 x\to0 x0

sin ⁡ x ∼ x tan ⁡ x ∼ x 1 − cos ⁡ x ∼ 1 2 x 2 e x − 1 ∼ x ln ⁡ ( 1 + x ) ∼ x ( 1 + x ) α − 1 ∼ α x \begin{align*} \sin x &\sim x \\ \tan x &\sim x \\ 1-\cos x &\sim \frac{1}{2}x^2 \\ e^x-1 &\sim x \\ \ln(1+x) &\sim x \\ (1+x)^{\alpha}-1 &\sim \alpha x \\ \end{align*} sinxtanx1cosxex1ln(1+x)(1+x)α1xx21x2xxαx

3️⃣ 替换原则

⚠️ 乘除可直接替换,加减需谨慎!


考点三:无穷小的比较

1️⃣ 高阶无穷小的运算规则

  • 定义:若 lim ⁡ x → x 0 α ( x ) β ( x ) = 0 \lim\limits_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=0 xx0limβ(x)α(x)=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 的高阶无穷小,记作 α ( x ) = o ( β ( x ) ) \alpha(x)=o(\beta(x)) α(x)=o(β(x))
  • 运算性质
    x k ⋅ o ( x m ) = o ( x k + m ) o ( x k ) ⋅ o ( x m ) = o ( x k + m ) o ( x k ) + o ( x m ) = o ( x min ⁡ ( k , m ) ) ( 当  k e q m ) \begin{align*} x^k \cdot o(x^m) &= o(x^{k+m}) \\ o(x^k) \cdot o(x^m) &= o(x^{k+m}) \\ o(x^k) + o(x^m) &= o(x^{\min(k,m)}) \quad (\text{当 } k eq m) \\ \end{align*} xko(xm)o(xk)o(xm)o(xk)+o(xm)=o(xk+m)=o(xk+m)=o(xmin(k,m))( keqm)
  • 示例
    x = o ( x 2 ) , o ( x ) ⋅ o ( x ) = o ( x 2 ) , o ( x ) + o ( x 2 ) = o ( x ) x = o(x^2),\quad o(x) \cdot o(x) = o(x^2),\quad o(x) + o(x^2) = o(x) x=o(x2),o(x)o(x)=o(x2),o(x)+o(x2)=o(x)

2️⃣ 无穷小的阶

  • 定义:若 lim ⁡ x → 0 f ( x ) x k = c ≠ 0 \lim\limits_{x\to 0}\frac{f(x)}{x^k}=c \neq 0 x0limxkf(x)=c=0,则称 f ( x ) f(x) f(x) x → 0 x\to0 x0 时的 k k k 阶无穷小。
  • 关键点
    • 阶数越高,趋近于0的速度越快。
    • 例如: x 2 x^2 x2 是比 x x x 高阶的无穷小。

3️⃣ 常见的等价无穷小( x → 0 x\to0 x0

等价关系记忆技巧
x ∼ sin ⁡ x x \sim \sin x xsinx泰勒展开首项
x ∼ tan ⁡ x x \sim \tan x xtanx图像在原点附近重合
x ∼ arcsin ⁡ x x \sim \arcsin x xarcsinx反函数对称性
x ∼ arctan ⁡ x x \sim \arctan x xarctanx
ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x自然对数展开
e x − 1 ∼ x e^x -1 \sim x ex1x指数函数展开
( 1 + x ) α − 1 ∼ α x (1+x)^\alpha -1 \sim \alpha x (1+x)α1αx二项式近似
1 − cos ⁡ ( k x ) ∼ 1 2 k 2 x 2 1-\cos(kx) \sim \frac{1}{2}k^2x^2 1cos(kx)21k2x2余弦泰勒展开
x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x - \ln(1+x) \sim \frac{1}{2}x^2 xln(1+x)21x2泰勒展开高阶项
e x − x − 1 ∼ 1 2 x 2 e^x - x -1 \sim \frac{1}{2}x^2 exx121x2
x − sin ⁡ x ∼ 1 6 x 3 x - \sin x \sim \frac{1}{6}x^3 xsinx61x3正弦泰勒展开
tan ⁡ x − x ∼ 1 3 x 3 \tan x - x \sim \frac{1}{3}x^3 tanxx31x3正切泰勒展开
x − arcsin ⁡ x ∼ − 1 6 x 3 x - \arcsin x \sim -\frac{1}{6}x^3 xarcsinx61x3反三角函数展开
arctan ⁡ x − x ∼ − 1 3 x 3 \arctan x - x \sim -\frac{1}{3}x^3 arctanxx31x3

4️⃣ 重要结论

(1) 等价定理
  • 替换原则
    • 乘除:可直接用等价无穷小替换,如 lim ⁡ x → 0 sin ⁡ x ⋅ ln ⁡ ( 1 + x ) x 2 = lim ⁡ x → 0 x ⋅ x x 2 = 1 \lim\limits_{x\to0}\frac{\sin x \cdot \ln(1+x)}{x^2} = \lim\limits_{x\to0}\frac{x \cdot x}{x^2}=1 x0limx2sinxln(1+x)=x0limx2xx=1
    • 加减:需谨慎!若替换后分子/分母为异号高阶小量,可能产生错误。
      反例 lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 ≠ lim ⁡ x → 0 x − x x 3 = 0 \lim\limits_{x\to0}\frac{\tan x - \sin x}{x^3} \neq \lim\limits_{x\to0}\frac{x - x}{x^3}=0 x0limx3tanxsinx=x0limx3xx=0(实际应为 1 2 \frac{1}{2} 21)。
  • 充要条件 α ∼ β    ⟺    α = β + o ( β ) \alpha \sim \beta \iff \alpha = \beta + o(\beta) αβα=β+o(β)
(2) 含变限积分的等价
  1. 积分等价性
    f ( x ) , g ( x ) f(x), g(x) f(x),g(x) x = 0 x=0 x=0 的某邻域内连续,且
    lim ⁡ x → 0 f ( x ) g ( x ) = 1 , \lim_{x\to0}\frac{f(x)}{g(x)}=1, x0limg(x)f(x)=1,
    则当 x → 0 x\to0 x0 时,
    ∫ 0 x f ( t )   d t ∼ ∫ 0 x g ( t )   d t . \int_0^x f(t)\,dt \sim \int_0^x g(t)\,dt. 0xf(t)dt0xg(t)dt.
    关键点:积分等价性成立的条件是 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 本身等价,而非仅积分上限等价。

  2. 积分上限为函数时的阶数计算
    x → 0 x\to0 x0 时,
    f ( t ) ∼ a t m , g ( x ) ∼ b x n , f(t) \sim a t^m, \quad g(x) \sim b x^n, f(t)atm,g(x)bxn,
    则积分
    ∫ 0 g ( x ) f ( t )   d t 的阶数为 n ( m + 1 ) . \int_0^{g(x)} f(t)\,dt \quad \text{的阶数为} \quad n(m+1). 0g(x)f(t)dt的阶数为n(m+1).
    推导过程
    ∫ 0 g ( x ) f ( t )   d t ≈ ∫ 0 b x n a t m   d t = a m + 1 ( b x n ) m + 1 = a b m + 1 m + 1 x n ( m + 1 ) . \int_0^{g(x)} f(t)\,dt \approx \int_0^{b x^n} a t^m\,dt = \frac{a}{m+1} \left(b x^n\right)^{m+1} = \frac{a b^{m+1}}{m+1} x^{n(m+1)}. 0g(x)f(t)dt0bxnatmdt=m+1a(bxn)m+1=m+1abm+1xn(m+1).
    记忆口诀“上限次数 ×(被积函数次数 + 1)”

  3. 求导定阶
    f ( x ) f(x) f(x) x → 0 x\to0 x0 时的 n n n 阶无穷小(即 f ( x ) ∼ C x n f(x) \sim C x^n f(x)Cxn),则其导数
    f ′ ( x ) ∼ C n x n − 1 , f'(x) \sim C n x^{n-1}, f(x)Cnxn1,
    x → 0 x\to0 x0 时的 n − 1 n-1 n1 阶无穷小。

(3) 常见函数的泰勒展开( x → 0 x\to0 x0

e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ ( ∣ x ∣ < 1 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − ⋯ \begin{align*} e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \quad (|x|<1) \\ (1+x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \\ \end{align*} exln(1+x)(1+x)αsinxcosx=1+x+2!x2+3!x3+=x2x2+3x3(x<1)=1+αx+2!α(α1)x2+=x3!x3+5!x5=12!x2+4!x4

⚠️ 陷阱提示

  1. 等价替换仅限乘除
    错误示例: lim ⁡ x → 0 tan ⁡ x − x x 3 = 错误替换 lim ⁡ x → 0 x − x x 3 = 0 \lim\limits_{x\to0}\frac{\tan x - x}{x^3} \xlongequal{\text{错误替换}} \lim\limits_{x\to0}\frac{x - x}{x^3}=0 x0limx3tanxx错误替换 x0limx3xx=0
    正确解法:用泰勒展开 tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) \tan x = x + \frac{1}{3}x^3 + o(x^3) tanx=x+31x3+o(x3),得极限为 1 3 \frac{1}{3} 31

  2. 加减法的陷阱
    当分子/分母为异号高阶小量时,直接替换可能导致错误。


考点四:函数求极限

1️⃣ 分析类型

判断是否为 0 0 \frac{0}{0} 00 ∞ / ∞ \infty/\infty ∞/∞等未定式

2️⃣ 化简技巧

  • 计算非零因子
  • 拆分极限存在的项
  • 提取公因子
  • 等价代换
  • 幂指函数指数化
  • 根式有理化
  • 变量替换

3️⃣ 计算方法

  • 洛必达法则
  • 泰勒展开(推荐精度:分子分母同阶)

考点五:极限反问题

1️⃣ 已知极限求另一极限

将未知极限通过四则运算转化为已知形式

2️⃣ 已知极限求参数

方法同上


考点六:渐近线

  1. 垂直渐近线 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)=
  2. 水平渐近线 lim ⁡ x → ± ∞ f ( x ) = A \lim\limits_{x\to\pm\infty}f(x)=A x±limf(x)=A
  3. 斜渐近线 y = k x + b y=kx+b y=kx+b,其中
    k = lim ⁡ x → ∞ f ( x ) x , b = lim ⁡ x → ∞ ( f ( x ) − k x ) k=\lim\limits_{x\to\infty}\frac{f(x)}{x},\quad b=\lim\limits_{x\to\infty}(f(x)-kx) k=xlimxf(x),b=xlim(f(x)kx)

📌 注意:水平与斜渐近线不共存


考点七:间断点分类

1️⃣ 连续性

函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处连续,需满足以下三个条件:

  1. f ( x ) f(x) f(x) x 0 x_0 x0 处有定义:即 f ( x 0 ) f(x_0) f(x0) 存在。
  2. 极限存在 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) xx0limf(x) 存在。
  3. 函数值等于极限值 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0} f(x) = f(x_0) xx0limf(x)=f(x0)

2️⃣ 间断点及其类型

  • 可去间断点:左右极限存在且相等
  • 跳跃间断点:左右极限存在但不等
  • 第二类间断点:至少一侧极限不存在(无穷或者震荡)

考点八:数列极限(单调有界准则证明)

1️⃣ 有界性证明

(1) 数学归纳法

步骤

  1. 基例:验证 u 1 u_1 u1 或前几项满足不等式(如 u 1 ≤ M u_1 \leq M u1M)。
  2. 归纳假设:假设 u k ≤ M u_k \leq M ukM 成立。
  3. 递推:证明 u k + 1 ≤ M u_{k+1} \leq M uk+1M
(2) 放缩法

核心思想

  • 单调递增数列:找上界 M M M,使得 u n ≤ M u_n \leq M unM 对所有 n n n 成立。
  • 单调递减数列:找下界 m m m,使得 u n ≥ m u_n \geq m unm 对所有 n n n 成立。

技巧

  • 利用已知不等式(如均值不等式、三角不等式)。
  • 对复杂表达式进行适当放大或缩小。

2️⃣ 单调性证明

(1) 无递推关系

常用方法

  1. 作差法:分析 u n + 1 − u n u_{n+1} - u_n un+1un 的符号。
    u n + 1 − u n > 0 (递增), u n + 1 − u n < 0 (递减) u_{n+1} - u_n >0 (递增), u_{n+1} - u_n <0 (递减) un+1un>0(递增),un+1un<0(递减)
  2. 不等式法:利用均值不等式、泰勒展开等工具。
  3. 导数法:若 f ( x ) f(x) f(x) 可导且 u n + 1 = f ( u n ) u_{n+1} = f(u_n) un+1=f(un),通过 f ′ ( x ) f'(x) f(x) 判断单调性。
(2) 有递推关系 u n + 1 = f ( u n ) u_{n+1} = f(u_n) un+1=f(un)

方法一:作差法

  • 构造 g ( x ) = f ( x ) − x g(x) = f(x) - x g(x)=f(x)x,分析 g ( u n ) g(u_n) g(un) 的符号。
    u n + 1 − u n = g ( u n ) u_{n+1} - u_n = g(u_n) un+1un=g(un)

方法二:递推函数单调性

  1. f ( x ) f(x) f(x) 单调递增
    • u 1 ≤ f ( u 1 ) u_1 \leq f(u_1) u1f(u1),则数列单调递增。
    • u 1 ≥ f ( u 1 ) u_1 \geq f(u_1) u1f(u1),则数列单调递减。
  2. f ( x ) f(x) f(x) 单调递减
    • 数列不单调,需用夹逼准则或其他方法。

⚠️ 陷阱提示

  1. 递推函数单调性误判
    f ( x ) f(x) f(x) 单调递减,数列可能振荡收敛(如 u n + 1 = − u n + 1 u_{n+1} = -u_n + 1 un+1=un+1)。
  2. 夹逼准则滥用:需确保两边的极限相同。
  3. 数学归纳法基础步遗漏:必须验证初始项成立。

补充:反三角函数定义与性质

常见反三角函数图像
常见反三角函数的定义域与值域


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值