高斯消元模板(整数)

int Gcd( int a , int b ){ return b==0?a:Gcd( b , a%b ); }
int Lcm( int a , int b ){ return a/Gcd( a , b )*b; }
int Abs( int a ){ return a<0?-a:a; }
int a[maxn][maxn];
int x[maxn];
int Gauss( int n , int m )
{
    int k,col,max_r;
    for ( k=0,col=0 ; k<n&&col<m ; k++,col++ )
    {
        max_r = k;
        for ( int i=k+1 ; i<n ; i++ )
            if ( Abs( a[i][col] )>Abs( a[max_r][col] ) )
                max_r = i;
        if ( max_r!=k )
            for ( int i=col ; i<=m ; i++ )
                swap( a[k][i] , a[max_r][i] );
        if ( a[k][col]==0 )
        {
            k--;
            continue;
        }
        for ( int i=k+1 ; i<n ; i++ )
        {
            if ( a[i][col]!=0 )
            {
                int LCM = Lcm( Abs( a[i][col] ) , Abs( a[k][col] ) );
                int ta = LCM/Abs( a[i][col] );
                int tb = LCM/Abs( a[k][col] );
                if ( a[i][col]*a[k][col]<0 )
                    tb = -tb;
                for ( int j=col ; j<=m ; j++ )
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
            }
        }
    }
    //无解
    for ( int i=k ; i<n ; i++ )
        if ( a[i][m]!=0 ) return -1;
    //自由元/无限解
    if ( k<m ) return m-k;
    //唯一解
    for ( int i=n-1 ; i>=0 ; i-- )
    {
        int temp = a[i][m];
        for ( int j=i+1 ; j<m ; j++ )
            if ( a[i][j]!=0 )
                temp -= a[i][j]*x[j];
        //无整数解
        if( temp%a[i][i]!=0 ) return -2;
        x[i] = temp/a[i][i];
    }
    //有解
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值