基于协同的Slope One算法原理介绍和实现

转载请注明出处:http://blog.csdn.net/gamer_gyt
博主微博:http://weibo.com/234654758
Github:https://github.com/thinkgamer
公众号:搜索与推荐Wiki
个人网站:http://thinkgamer.github.io


该篇文章主要介绍Slope One算法。Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 的协同过滤推荐算法。和其它类似算法相比, 它的最大优点在于算法很简单, 易于实现, 执行效率高, 同时推荐的准确性相对较高。

经典的ItemCF的问题

经典的基于物品推荐,相似度矩阵计算无法实时更新,整个过程都是离线计算的,而且还有另一个问题,相似度计算时没有考虑相似度的置信问题。例如,两个物品,他们都被同一个用户喜欢了,且只被这一个用户喜欢了,那么余弦相似度计算的结果是 1,这个 1 在最后汇总计算推荐分数时,对结果的影响却最大。

Slope One 算法针对这些问题有很好的改进。不过 Slope One 算法专门针对评分矩阵,不适用于行为矩阵。

Slope One算法过程

Slope One 算法是基于不同物品之间的评分差的线性算法,预测用户对物品评分的个性化算法。

Slope算法主要分为3步

  1. 计算物品之间的评分差的均值,记为物品间的评分偏差 (两物品同时被评分)
    R ( i , j ) = ∑ u ∈ N ( i ) ⋂ N ( j ) ( r u i − r u j ) ∣ N ( i ) ⋂ N ( j ) ∣ R(i,j) = \frac{ \sum_{ u \in N(i)\bigcap N(j) } (r_{ui} - r_{uj}) }{ | N(i) \bigcap N(j) | } R(i,j)=N(i)N(j)uN(i)N(j)(ruiruj)

( r_ui - r_uj ) 表示评分的差,这里需要注意的是j相对i的评分偏差是 r_ui - r_uj ,如果是i相对j的评分偏差则是 r_uj - r _ui,两 者是互为相反数的关系。

其中:

  • r_ui :用户u对物品i的评分
  • r_uj :用户u对物品j的评分
  • N(i) :物品i评过分的用户
  • N(j) :物品j评过分的用户
  • N(i) 交 N(j) :表示同时对物品i 和物品j评过分的用户数。
  1. 根据物品间的评分偏差和用户的历史评分,预测用户对未评分的物品的评分。
    p u j = ∑ i ∈ N ( u ) ∣ N ( i ) ⋂ N ( j ) ∣ ( r u i − R ( i , j ) ) ∑ i ∈ N ( u ) ∣ N ( i ) ⋂ N ( j ) ∣ p_{uj} = \frac{ \sum_{i \in N(u)} |N(i) \bigcap N(j) |(r_{ui} - R(i,j)) }{ \sum_{i \in N(u)}|N(i) \bigcap N(j)| } puj=iN(u)N(i)N(j)iN(u)N(i)N(j)(ruiR(i,j))
    其中:
  • N(u) :用户u评过分的物品
  1. 将预测评分进行排序,取Top N对应的物品推荐给用户

实例说明

例如现在有一份评分数据,表示用户对电影的评分:

-abcde
U12334
U24233
U34232
U43543

现在我们来预测预测每个用户对未评分电影的评分。

Step1: 计算物品之间的评分偏差,以U1为例:
R ( a , b ) = ( 2 − 3 ) + ( 4 − 2 ) 2 = 0.5 R(a,b) = \frac{ (2-3) + (4-2) }{ 2 } = 0.5 R(a,b)=2(23)+(42)=0.5
R ( a , c ) = ( 2 − 3 ) + ( 4 − 3 ) + ( 3 − 5 ) 3 = − 0.67 R(a,c) = \frac{ (2-3) + (4-3) +(3-5) }{ 3 } = -0.67 R(a,c)=3(23)+(43)+(35)=0.67
R ( a , d ) = ( 2 − 4 ) + ( 3 − 4 ) 2 = − 1.5 R(a,d) = \frac{ (2-4) + (3-4) }{ 2 } = -1.5 R(a,d)=2(24)+(34)=1.5
R ( a , e ) = ( 4 − 2 ) + ( 3 − 3 ) 2 = 1 R(a,e) = \frac{ (4-2) + (3-3) }{ 2 } = 1 R(a,e)=2(42)+(33)=1

同理可以计算出电影b,c,d,e与其他电影的评分偏差。

Step2: 计算用户对未评分物品的可能评分(为了方便计算,这里以U2为例)

由上表可知,用户U2 对电影a没有评分,这里计算用户U2对电影a的评分。

p u 2 , a = 2 ∗ ( 4 − 0.5 ) + 3 ∗ ( 2 − ( − 0.67 ) ) + 2 ∗ ( 3 − ( − 1.5 ) ) + 2 ∗ ( 3 − 1 ) ) 2 + 3 + 2 + 2 = 3.11 p_{u_2,a} = \frac{2 * (4-0.5) +3 * (2-(-0.67)) + 2 * (3-(-1.5) ) + 2 * (3-1)) }{ 2+3+2+2} = 3.11 pu2,a=2+3+2+22(40.5)+3(2(0.67))+2(3(1.5))+2(31))=3.11

Step3: 评分排序

由于给定样例中,U2只对a没有评过分,所以这里不需要进行排序,正常的话,按分数进行倒排就行。

代码实现

这里采用Python实现,在实现过程中并没有考虑算法的复杂度问题。

加载数据

    def loadData(self):
        user_rate = {
            "U1": {"a": 2, "b": 3, "c": 3, "d": 4},
            "U2": {"b": 4, "c": 2, "d": 3, "e": 3},
            "U3": {"a": 4, "b": 2, "c": 3, "e": 2},
            "U4": {"a": 3, "c": 5, "d": 4, "e": 3}
        }
        item_rate = {
            "a": {"U1": 2, "U3": 4, "U4": 3},
            "b": {"U1": 3, "U2": 4, "U3": 2},
            "c": {"U1": 3, "U2": 2, "U3": 3, "U4": 5},
            "d": {"U1": 4, "U2": 3, "U4": 4},
            "e": {"U2": 3, "U3": 2, "U4": 3}
        }
        return user_rate,item_rate

计算物品之间的评分偏差

    def cal_item_avg_diff(self):
        avgs_dict = {}
        for item1 in self.item_rate.keys():
            for item2 in self.item_rate.keys():
                avg = 0.0
                user_count = 0
                if item1 != item2:
                    for user in self.user_rate.keys():
                        user_rate = self.user_rate[user]
                        if item1 in user_rate.keys() and item2 in user_rate.keys():
                            user_count += 1
                            avg += user_rate[item1] - user_rate[item2]
                    avg = avg / user_count
                avgs_dict.setdefault(item1,{})
                avgs_dict[item1][item2] = avg
        return avgs_dict

计算预估评分

    def item_both_rate_user(self, item1, item2):
        count = 0
        for user in self.user_rate.keys():
            if item1 in self.user_rate[user].keys() and item2 in self.user_rate[user].keys():
                count += 1
        return count

    def predict(self, user, item, avgs_dict):
        total = 0.0 # 分子
        count = 0   # 分母
        for item1 in self.user_rate[user].keys():
            num = self.item_both_rate_user(item, item1)
            count += num
            total += num * (self.user_rate[user][item1] - avgs_dict[item][item1])
        return total/count

主函数调用

if __name__ == "__main__":
    slope = SlopeOne()
    avgs_dict = slope.cal_item_avg_diff()
    result = slope.predict("U2", "a", avgs_dict)
    print("U2 对 a的预测评分为: %s" % result)

打印结果为:

U2 对 a的预测评分为: 3.111111111111111

和上边我们计算的结果一致。

完整代码在:https://github.com/Thinkgamer/Machine-Learning-With-Python/tree/master/Recommend

Slope One的应用场景

该算法适用于物品更新不频繁,数量相对较稳定并且物品数目明显小于用户数的场景。比较依赖用户的用户行为日志和物品偏好的相关内容。

其优点:

  • 算法简单,易于实现,执行效率高;
  • 可以发现用户潜在的兴趣爱好;

其缺点:

  • 依赖用户行为,存在冷启动问题和稀疏性问题。

注:《推荐系统开发实战》已经在京东上线,感兴趣的朋友可以进行关注!

【技术服务】,详情点击查看: https://mp.weixin.qq.com/s/PtX9ukKRBmazAWARprGIAg

扫一扫 关注微信公众号!号主 专注于搜索和推荐系统,尝试使用算法去更好的服务于用户,包括但不局限于机器学习,深度学习,强化学习,自然语言理解,知识图谱,还不定时分享技术,资料,思考等文章!

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值