浅析gcd(欧几里得算法)和Exgcd(扩展欧几里得算法)

本文介绍了欧几里得算法(gcd),详细阐述其计算原理和时间复杂度,并进一步解析扩展欧几里得算法(Exgcd),包括递归实现和解二元一次方程的方法。通过理解这些概念,读者能更好地掌握最大公约数的计算及其应用。
摘要由CSDN通过智能技术生成

前言

说实话我的数论一直学得不是很好,证明和很多符号都加大了我在学习过程中的困难程度。所以在写这一篇总结的时候我也觉得自己会出现这样或那样的小错误。所以当正在看这篇文章的你,如何发现了任何错误,都欢迎私信或评论指出。

gcd

要知道扩展欧几里得是什么,首先要知道欧几里得是什么。欧几里得算法又称辗转相除法,它是指两个正整数a,b的最大公约数。
他的计算公式为gcd(a,b)=gcd(b,a mod b);
也就是说,我们可以假设

a=ipiei a = ∏ i p i e i

其中pi表示a的质因子,ei表示此质因子的最大次方。
b也同理。
就比如 12=2231 12 = 2 2 · 3 1 24=2331 24 = 2 3 · 3 1
也可以这么表示:
gcd(a,b)=iSaSbpimin(Ea[i],Eb[i]) g c d ( a , b ) = ∏ i ∈ S a ∩ S b p i m i n ( E a [ i ] , E b [ i ] )

最大公约数d为 max(d|a,d|b) m a x ( d | a , d | b )
如何证明这个 计算公式正确的?
我们假设 a=kb+r a = k b + r ,则有 r=akb=amodb r = a − k b = a m o d b 。其中 k=ab k = ⌊ a b ⌋
再假设 d d a , b
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
扩展欧几里得算法是求解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。逆元是指在模运算下,一个数的乘法逆元是指与它相乘后模运算得到 1 的数。在数论中,常常需要求一个数在模意义下的逆元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里得算法求逆元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里得算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 求逆元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在逆元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在逆元\n", a, m); } else { printf("%d 在模 %d 意义下的逆元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里得算法,返回 a 和 b 的最大公约数,并且求出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数求出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在逆元。否则,根据扩展欧几里得算法的结果,求出 x 的值作为 a 在模 m 意义下的逆元。注意,由于 x 可能是负数,所以要将其转化为正整数。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值